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Abstract

Bayesian updating remains the benchmark for dynamic modeling under uncertainty
within economics. Recent theory and evidence suggest individuals may process infor-
mation asymmetrically when it relates to personal characteristics or future life out-
comes, with good news receiving more weight than bad news. I examine information
processing across a broad set of contexts: 1) ego relevant, 2) financially relevant, and
3) non value relevant. In the first two cases, information about outcomes is valenced,
containing either good or bad news. In the third case, information is value neutral.
In contrast to a number of previous studies I do not find differences in belief updating
across valenced and value neutral settings. Updating across all contexts is asymmetric
and conservative: the former is influenced by sequences of signals received, a new vari-
ation of confirmation bias, while the latter is driven by non-updates. Despite this, pos-
teriors are well approximated by those calculated using Bayes’ rule. Most importantly
these patterns are present across all contexts, cautioning against the interpretation
of asymmetric updating or other deviations from Bayes’ rule as being motivated by
psychological biases.
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David Eil, Guillaume Fréchette, Nicole Hildebrandt, Elliot Lipnowski, David Low, Amnon Maltz, Markus
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1 Introduction

The ability to process new information in forming and updating beliefs is critical for a wide
range of important life decisions. Students receiving grades adjust beliefs about their ability
to succeed in different majors before declaring, entrepreneurs may be awarded or denied
funding for their projects and must update beliefs about the viability of these projects,
smokers who are informed of new health statistics on the dangers of smoking must update
about these risks in deciding whether to quit.

In modeling such situations, it is typically assumed that individuals use Bayes’ rule
to update their beliefs. Individuals who receive partially informative signals about states
of the world are assumed to incorporate this information in an unbiased, calculated way.
While Bayesian updating is the current paradigm theoretically, it is also accepted that it
has a strong normative basis.

Given the importance of updating beliefs for decision making in economic contexts,
experimental evidence on updating has been studied for some time (e.g., Kahneman and
Tversky (1973); Grether (1980); Grether (1992); Camerer (1987); Camerer (1995); Holt
and Smith (2009)). These studies greatly contributed to our understanding of how indi-
viduals update their beliefs, and highlighted the existence of cognitive biases, as updating
deviated from Bayes’ rule in systematic ways. Even so, the nature of the updating tasks in
these studies differed considerably from the real updating decisions that motivated them.
Unlike updating decisions that are economically relevant to individuals, updating in lab
experiments typically involved events such as drawing balls from urns, where subjects hold
no personal or financial stake in the outcome, beyond an incentive payment for accuracy.
Henceforth, I refer to such events as value neutral; information about them is just news,
neither good nor bad.

In contrast, value relevant or valenced events are those in which an individual strictly
prefers one outcome to another, and news about the outcome can be categorized as good
or bad. This distinction may be critically important, as there is now a small but growing
body of theory and empirical evidence suggesting that there exist further psychological
biases in how information is processed in value relevant contexts, depending on whether
it is perceived as good or bad news (e.g., Eil and Rao (2011); Sharot et al (2011); Ertac
(2011); Mobius et al (2014); Kuhnen (2014)). Drawing in part on this evidence, Sharot
et al (2012) claim: “Humans form beliefs asymmetrically; we tend to discount bad news
but embrace good news.”

In this paper I examine whether updating differs across value relevant and neutral con-
texts. My primary focus is on understanding whether there exist additional psychological
biases which lead to asymmetric updating when news is good or bad, beyond the cogni-
tive biases which have been previously found for value neutral contexts. I examine binary
events that are either 1) ego relevant, 2) financially relevant, or 3) value neutral. These
consist of two uncertain events that are objective in nature, involving the rolling of virtual
dice; one subjective, involving estimation of historical temperatures; and one that pertains
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to ego, involving relative performance on a math and verbal skills quiz. Financial rele-
vance is introduced randomly at the subject-event level, with the endowment of additional
financial prizes of $80 in the outcomes of interest. As this experiment utilizes a financially
incentivized belief elicitation procedure, this introduces a different type of financial stake.
To minimize confusion, I refer to this type of financial stake as an accuracy payment.

Information comes in the form of partially informative binary signals regarding the out-
comes of the events. I elicit beliefs utilizing the incentive compatible elicitation procedure
of Grether (1992), Holt and Smith (2009), and Karni (2009). The primary analysis focuses
on between subject variation in updating patterns and follows Mobius et al (2014) in es-
timating an empirical model of belief updating that nests Bayesian updating as a special
case, but allows for differential response to affirmative versus negative signals. The elicita-
tion procedure improves on previous work that utilizes other elicitation procedures, such
as the quadratic scoring rule (QSR), that are not invariant to subjects’ risk preferences.1

The results show that, common to previous studies, updating behavior deviates from the
strict mechanics of Bayesian updating. Updating is conservative, with many non-updates,
and asymmetric, with negative signals receiving more weight than affirmative signals. I find
evidence that observed asymmetry is affected by the sequence of signals received, with more
negative sequences showing more negative asymmetry, a new type of confirmation bias. Yet
critically, these deviations do not differ across value relevant and value neutral contexts,
i.e. regardless of whether signals contain good or bad news, or are simply conveying neutral
information. While I am able to reject the Bayesian benchmark with statistical precision,
posteriors are well approximated by those calculated using Bayes’ rule. These results are
consistent with Holt and Smith (2009) who found important deviations from Bayes’ rule,
yet also that average posteriors appear to approximate their Bayesian counterparts well,
particularly for intermediate priors.

Overall the analysis indicates the importance of observing a broad set of counterfactual
belief updates, as results of this paper demonstrate how narrowly comparing two events
can lead to conclusions that don’t hold up to broader comparisons with other events.
Specifically, updating patterns appear more asymmetric when updating about one’s own
performance on the ego relevant quiz rather than another’s performance, yet similar asym-
metry is present when subjects update about objective dice events. These results thus
caution against attributing biased updating patterns to contexts where such bias is psy-
chologically plausible, as updating patterns are similar across settings where such bias is
clearly implausible. The remainder of the paper is as follows. The following section dis-
cusses recent theoretical and empirical work investigating belief updating. Next, I outline
the experimental design, followed by a description of the results, and concluding with a
brief discussion.

1Antoniou et al (2015) discuss issues that may arise with inference of updating behaviors when elicitation
procedures are not robust to risk preferences.
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2 Related Literature

This paper is related to a sizeable literature on studying how individuals process informa-
tion and whether this is well approximated by Bayes’ rule. The majority of these studies
investigate updating about value neutral events, where subjects have no personal or finan-
cial stake in the outcome, excepting a payment for accurate belief reports. These studies
noted a number of cognitive biases corresponding to deviations from Bayes’ rule.

Kahneman and Tversky (1972), Kahneman and Tversky (1973), and Grether (1980)
found evidence in support of a “representativeness” heuristic, whereby individuals neglect
prior or base rate information when facing samples that mimic proportions or qualities of
their parent population.2 More broadly, base rate bias/neglect is often used in reference to
a general tendency to over respond to information, relative to a Bayesian. Earlier, Edwards
(1968) had observed a seemingly opposing bias, conservatism, the tendency for individuals
to under respond to information, ending up with posteriors closer to their priors than if
they had followed Bayes’ rule.

This evidence demonstrated that individuals do not appear to follow the exact me-
chanics of Bayes’ rule. Yet across contexts, Bayesian approximation does relatively well,
and fewer deviations are observed for more experienced subjects, see Camerer (1987) and
Camerer (1995). More recently, Holt and Smith (2009) find that belief updating is consis-
tent with Bayes’ rule at the aggregate level, however they find systematic deviations which
are more pronounced for extreme values of the prior, using a similar analysis to this paper.

Beyond these cognitive biases, which are invariant to the valence of news or signals,
neuroscientists, psychologists, and economists have posited the existence of additional psy-
chological biases, i.e. updating biases that are present only when information is valenced.
There are a number of psychologically plausible motivations for why updating may differ
when the context is financially or personally relevant. The proposed theories share a com-
mon consequence: an asymmetry that did not feature in the earlier discussion of cognitive
biases, specifically, an over-weighting of good news relative to bad news.

The first such motivation is that asymmetric updating may enable individuals to nurture
biased beliefs about their abilities or about future outcomes. For example, Landier (2000),
Yariv (2005), Mayraz (2014), and Mobius et al (2014) present models where individuals
gain utility from holding positive beliefs, and process information in a biased manner
(over-weighting good news relative to bad news) in order to nurture such positive beliefs.
Second, biased information processing is similarly rational if optimistic beliefs improve
health outcomes, e.g. Scheier and Carver (1987). Finally, biased beliefs could also be
nurtured for strategic purposes, as in Benabou and Tirole (2002) regarding self-confidence.

A number of studies have begun to investigate these biases. In an unincentivized
study, Sharot et al (2011) examined how individuals updated their beliefs about future
life events such as being diagnosed with Alzheimer’s disease or being robbed. They found

2Representativeness bias was also found and studied by Grether (1992) and Holt and Smith (2009).
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that individuals updated more in response to good news relative to bad news.3 Another
unincentivized study by Wiswall and Zafar (2015) finds some evidence that college students
revise beliefs more when they receive information that average future earnings are greater
than expected, relative to receiving information that earnings are less than expected.

As it is typically not possible to financially incentivize the elicitation of future life
events, economists have turned to study belief updating about value relevant events in the
laboratory. Crucially, these studies have differed from early work, not only in context,
but also in analysis. As there is little theoretical motivation for observing asymmetric
updating in value neutral contexts, previous work did not examine the relative weight
placed on affirmative versus negative signals. With value relevant contexts, this changed.
This has important implications for the comparability of results, as the wealth of analysis
from earlier work cannot be brought to bear on more recent studies. This feature of the
existing literature presents a clear rationale for the examination of robust counterfactual
settings, an advantage of the current paper.

Recent and ongoing work on belief updating in value relevant contexts often focuses
on a particular context of interest, along with one counterfactual. Most relevant is Mobius
et al (2014), who pair an experiment with a theoretical model of optimally biased Bayesian
updating in the context of ego relevant events. In the experiment they examine how
individuals update beliefs about scoring in the top 50% on an intelligence test, using
the same elicitation procedure as this paper. They find evidence that individuals update
asymmetrically, over-weighting good signals relative to bad, and conservatively, updating
too little in response to either type of signal. To provide evidence that these biases are not
present outside of ego relevant contexts they compare the results to a follow-up where a
subset of the same subjects complete the updating task for a robot, with the result that
both conservatism and asymmetry are reduced.

Regarding financial relevant events, Barron (2016) investigates updating beliefs when
individuals have a financial stake in the outcome of drawing balls from two urns. His ex-
periment complements this paper, focusing on one type of event while exogenously varying
different values priors, as opposed to the across event variation that is the focus here. Bar-
ron (2016) does not find evidence of asymmetric over-weighting of good news. In contrast
to the current paper financial stakes are smaller (10 GBP rather than $80), and the focus
precludes examining different types of events, e.g. ego relevant.

Other related papers on ego relevant tasks are Buser et al (2018), Eil and Rao (2011),
Ertac (2011). Buser et al (2018) is most similar, however their focus is on heterogeneity
in deviations from Bayes’ rule, as such they do not have an ego irrelevant control. Eil and
Rao (2011) and Ertac (2011) differ in their information structure; the former finds evidence
of positive asymmetric updating for relative intelligence and beauty, while the latter finds
the opposite asymmetry, that bad news is weighted more than good news. While results

3Of note is that there is recent work which critiques some of the evidence for asymmetric updating in
these types of studies within psychology and neuroscience, see Shah et al (2016).
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of Ertac (2011) are similar to those of this paper, the conclusions differ starkly.4

A common challenge inherent to this literature involves the construction of an appro-
priate counterfactual updating task. Clearly, evidence of biased updating in value relevant
contexts could relate to cognitive biases identified by earlier work, rather than psychological
biases. Individuals may update differently for different base rates or priors, or for different
distributions of received signals. Even the objective versus subjective nature of the event
may affect updating behavior.5 To overcome this challenge, the current paper contains a
more comprehensive set of updating decisions which form a natural set of counterfactuals
that can be used to evaluate behavior. Observing this broader set of decisions may alter
the interpretations of deviations from Bayes’ rule in important ways, as the results of this
paper will show.

3 Experimental Design

The experiment was conducted at New York University, at the Center for Experimental
and Social Science (CESS). Recruitment was done via the CESS online system, where
undergraduate students are notified by email when an experiment is scheduled, and have
the opportunity to sign up. A total of 326 subjects participated, in 32 different sessions
for an average of 10 subjects per session.6 The average subject payment was $24.96 for
approximately 75 minutes including a $10 showup fee. The experimental data is also
studied in Coutts (2015), there with the aim of distinguishing models of belief bias. That
paper focuses exclusively on prior formation, and does not examine updating behavior.

Individuals in the experiment faced four different binary events and a sequence of four
incentive compatible belief elicitations for each event. First, their prior beliefs about the
probability of the event were elicited. Next they received a binary signal, regarding whether
the event had occurred. This signal was true with two-thirds probability, and false with
one-third probability. After receiving this signal their beliefs were again elicited, and the
same process was repeated two more times.

One concern was that the elicitation procedure or the sequence of signals might be
confusing to some subjects. These features of the experiment were presented making use
of intuitive explanations that aid subject understanding, following Grether (1980) who
recognized their importance for experimental credibility. A large component of the ex-

4Grossman and Owens (2012) examine absolute performance, but do not observe the same biases in
information processing found in studies on relative performance. Clark and Friesen (2009) find little evidence
of overconfidence in a related study on task experience rather than feedback.

5Some evidence that the objective versus subjective nature may affect updating is presented in this
paper. Among the studies cited above, the majority have one counterfactual updating task, however only
Barron (2016) (financially relevant) and Ertac (2011) (ego relevant) examine a counterfactual updating task
that is robust to the above concerns, and in the case of Ertac (2011) only for a small subsample.

6Instructions are available in Appendix H. Because of a technical failure, one session resulted in data
for only one event. 318 subjects participated in all four events.
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periment consisted of intuitive explanations and examples, as well as practice with all of
the experiment’s components before the actual experiment began. A questionnaire was
administered to every participant after completing the experiment. This, as well as verbal
feedback, suggested that subjects had a good understanding of the various components of
the experiment.

3.1 Belief Elicitation

To elicit beliefs I use the method of Karni (2009), utilized also by Grether (1992), Holt
and Smith (2009), and Mobius et al (2014), which I henceforth call the lottery method.7

Incentive compatibility follows from a dominance argument, that individuals strictly prefer
a higher probability of earning the same monetary prize. In order to make comparisons of
lotteries, the method additionally requires that individuals exhibit probabilistic sophisti-
cation, see Machina and Schmeidler (1992). It does not require that individuals maximize
expected utility, nor does it require assumptions on risk preferences.8 The method involves
the possibility of earning a lump sum payment a, and works as follows.

Subjects are asked to report a probability π̃ that makes them indifferent between par-
ticipating in a lottery that pays a with probability π̃ and 0 otherwise, or participating
in a lottery that pays a whenever the event of interest occurs. After indicating π̃, the
computer draws a random number r distributed uniformly from 0 to 100. If r ≥ π̃, a
subject participates in the lottery that pays a with probability r. If r < π̃ the subject faces
the lottery that pays a when the event in fact occurs (“event lottery”). When r takes on
discrete values, this mechanism is equivalent to a 101 item choice list that requires a choice
between the “event lottery” and an objective lottery which pays a with percentages in the
set of integers from 0 to 100, with one choice selected at random. In the experiment a is
either low ($3), medium ($10), or high ($20), randomized at the session level.

In order to facilitate subjects understanding the lottery method, the experiment made
use of an intuitive graphical interface.9 Subjects were introduced to a gumball machine,
that had 100 black or green gumballs. This represented a lottery with the probability of
success equal to the number of green gumballs out of 100. One gumball would be drawn
from the machine, at random. Subjects were told that the computer had a list of 101
gumball machines, each with a different proportion of green gumballs, and that one of

7See Karni (2009) for a more detailed description of the lottery method, though the method has been
described in a number of earlier papers, see Schlag et al (2015). The mechanism has also been referred to
as the “crossover method”, “matching probabilities”, and “reservation probabilities”.

8While this method is a variant of the Becker-Degroot-Marschak (BDM) mechanism, note that it is not
subject to the critique of Karni et al (1987), as the method identifies parallel probabilities that lead to
indifference between two lotteries; see Healy (2016).

9Subject understanding of methods of belief elicitation has been a concern for many experimental
economists. Schlag et al (2015) provides a nice overview of the literature discussing the effects of complexity
of elicitation procedures on responses. Schotter and Trevino (2014) is a good overview more generally on
eliciting beliefs in laboratory settings.
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these would be randomly selected, i.e. the discrete uniform distribution.
They were then asked to indicate on a graphical slider, exactly what point they would

prefer to base their potential earnings on the “gumball lottery” instead of the “event
lottery”, which paid off if the event of interest occurred. Figure 1 provides screenshots of the
gumball machine, as well as the slider subjects had to move. Subjects were given significant
practice with the slider, with non-paid practice events, before the primary experiment
began.

Figure 1: Screenshot from the Experiment: Slider

The gumball machine was used to provide an intuitive representation of the lottery method. Subjects would
indicate on the slider the minimum threshold, i.e. the number of green gumballs there had to be in the
machine before they would prefer to wager the accuracy payment (here $3) on the gumball machine rather
than the event, “you scored in the top 15% on the quiz”. The proportion of green gumballs in the picture
adjusted as the slider was moved.

3.2 Events

The four events, presented in random order, are a key source of variation in the exper-
iment.10 Of these four events, two involve rolling dice, and their probabilities can be
objectively calculated.11 The outcome of these events was determined by chance, and
individuals could not affect these outcomes.

The other two events are subjective, based upon tasks that individuals had completed
prior to the beginning of the experiment. Most relevant to previous studies of asymmetric
updating is an event where individuals had to estimate the probability they scored in
the top 15% on a 5 minute, ego relevant quiz. Percentiles in the quiz were generated
by comparing scores to 40 individuals who took the quiz in previous piloting, which was

10One of the events (easy dice) was fixed as the final event. The other three events were randomly ordered
at the session level. Updating behavior does not differ by order.

11It is difficult to find a rigorous definition of what makes a probabilistic process “objective”. I follow
the definition of Gilboa and Schmeidler (2001).
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known to students. The quiz involved multiple choice questions on math and English skills,
similar to standardized college entry tests in the USA.12 In order to generate a sensible
control group, every individual in the experiment had a 30% chance of being selected to
estimate the performance of a randomly selected anonymous partner in the room, rather
than their own performance. 95 out of 318 subjects were randomly selected for this control,
independent of any other treatments in the experiment.

The fourth event was whether the individual correctly answered a question about what
the weather (mean temperature) was on a randomly selected day in New York City in the
previous calendar year. This question is not objective in the sense of the dice questions,
but it also does not appear to involve skill or ability.13 Figure 2 summarizes the four events
that all individuals faced.

One important feature of these events are the relatively low probabilities, due to bud-
get constraints. Empirically the events occurred on average 15% of the time, with the
implication that there will be significantly more negative than affirmative signals. In the
data, 63% of the signals are indeed negative, which, as the results sections will discuss, may
affect updating behavior. Importantly, while the probability of events were low, priors were
significantly higher.14 The average prior is 36%, and over one-third of priors are greater
than or equal to 50%, which facilitates comparisons with other studies.

3.3 Stakes

Another key source of variation in the experiment involved varying the financial stakes.
Within each event, individuals had a 50% chance of receiving an additional $80 if that
event occurred. This financial stake was made salient as subjects physically drew a token
from a bag, that was labelled either $80 or $0. If they drew a $0 token, they knew that they
would have no financial stake in the event, they could only potentially earn an accuracy
payment for their belief report. If they drew an $80 token, they knew that they could
potentially earn $80, if the event in fact occurred, and they were selected for payment for
that specific outcome.

In this latter case, at the end of the experiment only one of the financial stake or the
accuracy payment is paid, chosen at random. This design feature ensured independence
between the financial stake and accuracy payment, to maintain incentive compatibility
by eliminating hedging opportunities in a manner similar to Blanco et al (2010). Incen-
tive compatibility is preserved assuming a state-wise monotonicity assumption, which is

12This quiz was taken before individuals made any choices, and before they had any knowledge of the
four events. Subjects were told truthfully that performing better on the test would lead to higher expected
payments.

13Individuals were correct if the true temperature was within plus or minus 5 degrees Fahrenheit of their
estimate. In fact, there is no correlation between beliefs about getting this question correct and actually
getting the question correct.

14See Coutts (2015) for a discussion of this phenomenon.
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Figure 2: Description of Events

(a) Hard Dice: The computer rolls four dice.
Event occurs when exactly two out of those
four dice was a specified number (e.g. 4).

The probability of this is
(
4
2

) (
1
6

)2 ( 5
6

)2
=

150
1296 or approximately 11.57%.

Blank
Space

(b) Easy Dice: The computer rolls two dice.
Event occurs when two different specified
numbers were the only numbers to come up
(e.g. 5-3, 3-5, 3-3, 5-5). The probability of
this is 4

36 or approximately 11.11%.

Blank Space

(c) Weather: Event occurs if the individual
correctly estimated the average temperature
on a specified random day in NYC in the pre-
vious year (2013), +/- 5 deg F. In the sample,
25.77% of subjects were in the correct range.

Blank
Space

(d) Quiz: Event occurs if the individual
scored in the top 15% on an ego relevant
multiple choice quiz (self). For a subset of
participants the event pertained to a ran-
dom partner’s performance instead of their
own (other). Percentiles were generated in
comparison to 40 pilot quiz-takers.

required whenever one pays for one randomly selected decision, see Azrieli et al (2018).
Further details of this procedure and conditions for incentive compatibility can be found
in Appendix A.

3.4 Signals (News)

News comes in the form of noisy, binary signals, after the first elicitation (prior). Signals
were explained with the aid of pictures of “gremlins”, in a procedure related to that of
Mobius et al (2014). In this experiment, individuals were told that there were three gremlins
that all knew whether the event had occurred. Two of the three gremlins always told the
truth, while one gremlin always lied. The subjects were then told one gremlin had been
randomly selected, and that gremlin either provided them an affirmative signal (the event
had occurred), or a negative signal (the event had not occurred).

In this way signals were true with probability 2
3 , which differs slightly from the signal

strength of 3
4 in Mobius et al (2014). After receiving the signal, posterior beliefs were
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elicited again using the lottery method. Subjects were given three independent signals
(knowing the structure in advance) and were informed that the gremlins were drawn with
replacement in order to maintain a constant probability of 2

3 that the signal was true.
In total subjects had their beliefs elicited four times for each of the four events: one

prior elicitation, and three posterior, for a total of 16 elicitations. One of the elicitation
rounds was randomly selected at the end for payment in accordance with the procedure
discussed in Appendix A.

Figure 3 depicts screenshots from the experiment that showcase the use of gremlins
as graphical aids.15 In addition, individuals also had practice with receiving signals and
updating beliefs with non-paid practice events, before the paid experiment began.

Figure 3: Screenshots from the Experiment: Signals

(a) Screenshot introducing signals.

(b) Screenshot of a received (negative) signal.

15Images are from www.mycutegraphics.com, by author Laura Strickland.
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3.5 Classifying Good/Bad News (Value Relevant) from Just News (Value
Neutral)

To summarize the treatments, accuracy payments of a ∈ {3, 10, 20} were randomized at
the session level, while financial stakes of $0 or $80 were randomized at the subject-event
level. Additionally, for the quiz event, 30% of subjects were randomly allocated to a control
treatment where they were asked to update about another randomly selected individual’s
performance.

Thus, for an event that a given subject was allocated an $80 financial stake, information
about whether the event occurred will contain good or bad news. Information which
indicates such an event is more likely, corresponds to an increase in the expected probability
of earning the $80, and vice-versa.

For those events that a given subject was allocated a $0 stake, whether informa-
tion/news is good or bad depends on the event itself. To the extent that individuals
gain utility from believing they have high ability, the quiz event (estimating own perfor-
mance) involves a personal, non-pecuniary stake. Thus for this quiz event, binary signals
about performance will contain either good news (they are in the top 15%), or bad news
(they are not in the top 15%).

These contexts are in contrast with value neutral events where there are no personal
stakes: the two dice events and the weather event, and those in which subjects held a $0
(rather than $80) financial stake in the outcome. Here signals contain information about
outcomes, but these outcomes are irrelevant to individual well being. In other words, news
is simply news.16

Of 1280 events, 634 involved a financial stake of $80, which means signals regarding
these events are categorized as value relevant. The remaining 646 events had no financial
stake.17 However, of these 646 events, 115 were the quiz (self) event which is a personal
stake. Thus altogether, I classify 749 events as potentially relating to good/bad news (value
relevant), and 531 events as just news (value neutral).

4 Results

4.1 Overview of Pooled Results

As a first pass at examining updating behavior I plot reported subject beliefs and compare
these to posterior beliefs that would have resulted if subjects updated using Bayes’ rule.

16As noted before, accuracy payments are a form of financial stake. However, ex-ante, an individual
has no reason to care whether an event occurs or not, as long as their belief report is accurate. It may
be argued that the weather event involves a personal stake, if individuals derive utility from correctly
estimating historical temperatures. I do not find this likely, but regardless, none of the results in this paper
hinge on the inclusion of the weather event.

17The reason they are not equal is that some sessions had odd numbers of subjects, and the physical
drawing of $0 or $80 always involved an equal proportion of both stakes.
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Following the discussion in the previous section, I split the sample into events where sub-
jects have a financial or personal stake in the outcome, and events where subjects have no
such stake.

The former include all events where subjects stand to earn $80 if the event occurs,
as well as the event that involved whether they scored in the top 15% on the quiz. For
these events, information in the form of noisy signals is valenced. The latter events do not
involve individual ability and subjects have no additional financial stake in the outcome
of the event. Thus, signals provide new information about these outcomes, information
which is neither good nor bad. Belief reports are financially incentivized using the lottery
method.

Figure 4 plots the average reported belief for the prior, as well as the belief after
receiving each signal. Included in the same figure is the path that beliefs would take if
individuals were perfect Bayesians, given the subject’s first reported belief.

Figure 4: Evolution of Beliefs
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(a) Financial/Personal Stake: Good/Bad News
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(b) No Stake: Just News

The path of beliefs starting from the prior (round 0) and after each sequential signal (rounds 1 through
3). (a): Quiz (self) event and all instances where subjects could earn $80 if the event occurred. (b): All
other instances. Average individual responses are the blue solid line, the Bayesian benchmark is marked
as the black dashed line. Bayesian benchmark takes prior beliefs, and uses Bayes’ rule to calculate how
beliefs would evolve given the signals that subjects actually received.. Error bands represent 95% confidence
intervals. (a) N = 749 (b) N = 531 observations per round.

From Figure 4 one can see that there are slight deviations from Bayes’ rule for both
subsamples, as individual’s update slightly more conservatively. However the difference
between reported posteriors and Bayesian posteriors is not significant at any conventional
level. There are slight differences in prior belief formation across the two groups, part of
which is accounted for by the presence of the quiz (self) event. In fact, priors are biased
upwards for all events, as detailed in Coutts (2015).

Beyond this, no substantive differences are apparent in patterns of updating across the
two subsamples. Thus from an initial look at the data, updating does not appear to differ
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when news is good or bad, compared to when news is simply news.18 The correlation
between empirical posterior beliefs and posterior beliefs calculated using Bayes’ rule is
0.89, higher than that found in Mobius et al (2014). Pooling across the three updating
rounds, the average posterior is 33.8%, while the average Bayesian posterior, calculated
using subject priors, is 32.5%. These are remarkably similar, though it is noteworthy that
the difference is significantly different from zero at the 1% level using a Wilcoxon rank-sum
test. Interestingly, despite the high correlation between actual posteriors and Bayesian
posteriors, the aggregate data includes a large number of non-updates. 41% of reported
posteriors are identical to reported priors and only 9% of subjects update in every round.

To summarize thus far, updating appears to be well approximated by Bayes’ rule,
despite a large number of non-updates. However, looking only at aggregated posterior
beliefs may potentially obscure how individuals react to signals, and may be affected by the
fact that negative signals are more prevalent. I next use a flexible empirical framework to
examine how individuals respond to both affirmative or negative signals, which, depending
on the event and stake conditions, may be interpreted as good or bad news. This permits
a more rigorous investigation into whether individuals update asymmetrically, when the
outcomes of events are either ego relevant or financially relevant, as has been found in
previous literature.

4.2 Information Processing: Framework

I now provide a more detailed analysis, following Mobius et al (2014) by using a flexible
model of updating that retains the structure of Bayes’ rule, but allows for the possibility
that individuals place different weight on the prior, affirmative signals, or negative signals.
The model is a variant of that used originally by Grether (1980), and more recently by Holt
and Smith (2009). Bayes’ rule can be written in the following form, considering binary
signals, st = k ∈ {0, 1}, and letting µ̂t be the belief at time t:

µ̂t
1− µ̂t

=
µ̂t−1

1− µ̂t−1
· LRk (1)

where LRk is the likelihood ratio of observing signal st = k ∈ {0, 1}. In this experiment,
LR1 = 2 and LR0 = 1

2 , given the signal strength of 2
3 . Taking natural logarithms of both

sides and using an indicator function, I{st = k}, for the type of signal observed,

logit(µ̂t) = logit(µ̂t−1) + I{st = 1} ln (LR1) + I{st = 0} ln (LR0) . (2)

The empirical model nests this Bayesian benchmark as follows,

logit(µ̂it) = δlogit(µ̂i,t−1) + β1I(sit = 1) ln (LR1) + β0I(sit = 0) ln (LR0) + εit. (3)

18In Appendix G I present these figures for all events, all financial stake, and all accuracy payment
conditions separately. From those figures, one can see that there are some slight differences in updating
behavior across events, but financial stakes or accuracy payments do not appear to alter updating behavior.
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δ captures the weight placed on the log prior odds ratio. β0 and β1 capture responsiveness
to either negative or affirmative signals respectively. In the context of the experiment,
sit = 1 corresponds to a signal that YES the event had occurred, while sit = 0 corresponds
to a signal that NO the event had not occurred. Since I(sit = 0) + I(sit = 1) = 1 there is
no constant term. εit captures non-systematic errors.

This framework allows for the testing of the primary hypotheses of this paper. Bayes’
rule is a special case of this model when δ = β0 = β1 = 1. Additionally, as described in
Mobius et al (2014), Bayes’ rule satisfies three additional properties: invariance, sufficiency,
and stability. When δ = 1, the updating process is said to satisfy invariance, i.e. the change
in logit beliefs depends only on past signals. Sufficiency requires that after controlling for
prior beliefs, lagged information does not significantly predict posterior beliefs. Finally,
stability requires that the structure of updating is stable across rounds.

Given past evidence, it seems unlikely subjects will satisfy the strict requirements of
Bayesian updating. As a secondary hypothesis, I significantly weaken the requirement of
Bayesian updating to a flexible model that may involve a number of different cognitive
biases. The only restriction I impose, is that these cognitive biases do not differ on average
across value relevant and value neutral contexts. Thus subjects may be conservative, or
suffer from representativeness bias, but if these biases do not lead to differential updating
patterns across valenced and non valenced contexts, then they have not entered into the
domain of psychological bias.

The key tests of whether there are psychological biases in updating involve whether
updating differs across valenced and neutral contexts. Using superscripts V and N respec-
tively on the framework parameters for these contexts, the key hypotheses are presented in
Figure 5. The central hypothesis of interest in this paper, is whether there are differences in
asymmetric updating, presented on the final line of Figure 5. While this asymmetric updat-
ing hypothesis was posited before the experiment was conducted, it was not pre-registered.

Figure 5: Hypotheses of the Empirical Framework

Bayes’ Rule
δ = 1; β0 = 1; β1 = 1.

Cognitive Biases
δV = δN ; βV1 = βN1 ; βV0 = βN0 .

Psychological Biases
δV 6= δN ; or βV1 6= βN1 ; or βV0 6= βN0 .

Positive Asymmetry: Negative Asymmetry:
βV1 − βV0 > βN1 − βN0 βV1 − βV0 < βN1 − βN0
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Importantly, the relevant benchmark for evidence of psychological bias is not Bayes’
rule, but actual observed updating behavior in value neutral contexts. This significantly
raises the bar for detecting deviations, as prima facie evidence suggests that individuals
already suffer from cognitive biases in information processing.

As a first line of investigation, in Appendix C I examine the three properties of invari-
ance, sufficiency, and stability for Bayes’ rule. Overall, the pooled data do not support
these properties, though the magnitude of deviations is relatively small.19 I now turn to
the main empirical framework of Equation 3.

Table 1 presents the aggregate data, as well as the two subsamples introduced earlier,
pooling across all updating rounds. Note that significance is indicated as different from
the Bayesian benchmark prediction of one, not zero. Standard errors are clustered at
the individual level. In the primary sample I do not include posterior beliefs that were
updated in the opposite direction that Bayes’ rule predicts, which amounts to dropping
4.8% of observations. I include all other subjects, including those who never update their
beliefs.20

Table 1 provides the finer details of updating behavior that Figure 4 is unable to
capture. What is first apparent is that updating behavior deviates from the strict Bayesian
prediction that all coefficients are equal to 1. There is substantial conservatism in response
to both affirmative and negative signals, as indicated by coefficients less than one for β1
and β0. Of note is that the degree of conservatism is less than that found in studies by
Mobius et al (2014) and Buser et al (2018).

The coefficient on δ is significantly lower than 1. The significance of this is that subjects
are updating as if the priors they held were closer to one-half, i.e. a probability weighting of
prior beliefs towards one-half.21 There is further a strong asymmetric bias that is present
across Table 1, with negative signals receiving more weight than affirmative, significant at

19One valid concern regarding the OLS analysis is in using priors as a dependent variable. Since priors are
lagged posteriors, this creates a potential issue if there is substantial heterogeneity in response to signals,
which could lead to upwardly biased estimates of δ, see Mobius et al (2014). Instrumenting with higher
order lagged beliefs or lagged Bayesian beliefs is possible, however such techniques do not alter the results
reported. Recovering unbiased estimates of δ is also not central to the results of this paper.

204.8% is less than the approximately 10% in Mobius et al (2014) and Buser et al (2018). As Bayesian
posteriors will never be at the boundary for intermediate priors, the framework is agnostic for beliefs of 0
or 1. Following Mobius et al (2014) and Buser et al (2018), these observations are dropped, amounting to
6% of the sample. In Appendix Table F1 I examine implications of these sampling restrictions, following
Grether (1992) and Holt and Smith (2009) by replacing boundary observations by 0.01 or 0.99 respectively.

21To see this, note that the generalization in Equation 3 implies the following relationship:

µ̂t
1− µ̂t

=

(
µ̂t−1

1− µ̂t−1

)δ
· (LRk)βk .

When δ < 1, the effect is to bias or weight the log prior odds ratio
(

µ̂t−1

1−µ̂t−1

)
towards 1, i.e. subjects update

as if priors µ̂t−1 were closer to one-half. If δ were greater than 1, this effect would lead to updating as if
priors greater than one-half were closer to 1, and updating as if priors less than one-half were closer to 0.
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Table 1: Updating Beliefs for All Events

Dependent Variable: Logit Posterior Belief

(1) (2) (3)
Regressor Good/Bad News Just News All

δV 0.918∗∗∗

(0.012)
βV1 0.594∗∗∗

(0.040)
βV0 0.782∗∗∗

(0.043)
δN 0.907∗∗∗

(0.014)
βN1 0.576∗∗∗

(0.051)
βN0 0.812∗∗∗

(0.051)
δ 0.914∗∗∗

(0.009)
β1 0.588∗∗∗

(0.034)
β0 0.793∗∗∗

(0.038)

P-Value (δ = 1) 0.0000 0.0000 0.0000
P-Value (β1 = 1) 0.0000 0.0000 0.0000
P-Value (β0 = 1) 0.0000 0.0003 0.0000

Diff (β1 − β0) −0.189 −0.236 −0.205
P-Value (β1 = β0) 0.0002 0.0003 0.0000

R2 0.84 0.82 0.84
Observations 1950 1410 3360

P-Value [Chow-test] for δV = δN 0.5326
P-Value [Chow-test] for βV1 = βN1 0.7700
P-Value [Chow-test] for βV0 = βN0 0.5852
P-Value [Chow-test] for (βV1 − βV0 )− (βN1 − βN0 ) 0.5489

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant.

the 1% level.
However, as with the earlier patterns, there do not appear to be any differences between

beliefs about events where subjects have a personal or financial stake versus those where
subjects have no stake, and Table 1 shows that I cannot reject equality of any of the three
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coefficients using Chow tests. Additionally, I cannot reject the hypothesis that βV1 − βV0 =
βN1 − βN0 . Thus I do not observe any evidence of psychological bias. Whether news is a
source of good/bad information or simply neutral information, does not appear to alter
how beliefs are updated.

At first glance the results in Table 1 seem at odds with the previous section: posteriors
are well approximated by Bayes’ rule, yet the framework rejects the Bayesian benchmark
and finds significant asymmetry. Similarly contradictory patterns can be seen in Appendix
Figure D1, which plots average updating behavior by type of signal received. Asymmetry
is not observed for the aggregate data, and is only slightly visible when observing moderate
priors.

There are two important factors in reconciling these patterns with the earlier results.
First, the response to negative signals is only slightly below the Bayesian prediction, and
negative signals represent the majority of signals received. Second is that the framework
does not assume unitary weighting of the log odds ratio of prior beliefs. In particular, the
findings that δ < 1 and β0 > β1 effectively operate in opposite directions in the aggregate
data. The reason is that δ < 1 implies that individuals update as if priors were closer
to one-half than they actually are. Because approximately two-thirds of the data involve
priors less than one-half, this has the overall effect of biasing posteriors upwards, and hence
reducing the appearance of this asymmetry in the raw data. The finding that δ < 1 was also
found by Holt and Smith (2009), there identified as a cognitive bias in general information
processing.

Finally, similar to the previous section, there are no significant differences in updating
behavior across the financial stake conditions, including the varying payments for accuracy,
presented in Appendix Table B1. Regarding the accuracy payments, this is relevant to
studies of the effects of stakes on behavior in lab experiments, especially regarding belief
elicitation. It suggests that paying subjects more for accurate beliefs may have little effect
on belief updating.22 In the next section I use the same analysis to investigate wether there
are deviations at the event level.

4.3 Information Processing By Event

This section examines whether deviations from Bayesian updating are driven by specific
events. Previous evidence has found that individuals update asymmetrically when provided
information on their performance on a test, over-weighting good news relative to bad as in
Mobius et al (2014) and Eil and Rao (2011), or the opposite asymmetry as in Ertac (2011).
I thus focus attention on the quiz (self) event: whether an individual believes they scored
in the top 15% on an ego relevant quiz.23

22Combined with Coutts (2015), which showed that increasing accuracy payments can lead to more biased
prior formation, the implications are that ideal incentive payments may be relatively low.

23The signal structure and elicitation procedure is comparable with Mobius et al (2014) and Buser et al
(2018), who examined beliefs of subjects about scoring in the top 50%, rather than 15%.
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Note that in studying updating behavior in one context, it is critical to have an ap-
propriate counterfactual comparison. Deviations in a given context do provide evidence
against Bayes’ rule, but their attribution to a particular bias or context is only valid if
one can rule out that these deviations occur in other contexts. Use of an adequate control
group is standard for extrapolating that deviations do not occur across other contexts.
This requires that the control group is suitably defined, and has sufficient statistical power
to rule out deviations of interest. As I will discuss further, defining a suitable control
group for updating on the quiz is not necessarily straightforward, and may explain why
few studies in this literature are able to satisfy this requirement.

As an initial control group for the quiz event in this experiment, 30% of subjects did
not update about their own performance, but instead updated about the performance of
a randomly selected anonymous individual in the lab. This is an intuitive control, yet
one issue is that observed prior beliefs about one’s own performance tend to be greater
than those about another’s performance. This is problematic, as in Appendix Figure E1,
I present some evidence that updating differs for different values of the prior.

The existence of evidence across contexts of this experiment provide additional compar-
ison groups. There is sufficient variation across the different events and financial treatments
such that differences in updating that only appear in one context would be strong evidence
that such patterns are indeed context specific. On the other hand, similar differences in
updating across contexts would suggest that deviations from Bayes’ rule may reflect more
general cognitive biases.
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Table 2: Updating Beliefs Within Events

Dependent Variable: Logit Posterior Belief

(1) (2) (3) (4) (5)
Regressor Easy Dice Hard Dice Weather Quiz (S) Quiz (O)

δ 0.894∗∗∗ 0.872∗∗∗ 0.928∗∗∗ 0.952∗∗ 0.912∗∗

(0.028) (0.022) (0.024) (0.022) (0.035)
β1 0.476∗∗∗ 0.404∗∗∗ 0.684∗∗∗ 0.590∗∗∗ 0.709∗∗

(0.090) (0.062) (0.061) (0.054) (0.118)
β0 0.821∗ 0.886 0.818∗∗∗ 0.834∗∗∗ 0.732∗∗∗

(0.099) (0.080) (0.047) (0.060) (0.099)

P-Value (δ = 1) 0.0002 0.0000 0.0033 0.0259 0.0130
P-Value (β1 = 1) 0.0000 0.0000 0.0000 0.0000 0.0157
P-Value (β0 = 1) 0.0719 0.1538 0.0001 0.0063 0.0082

Diff (β1 − β0) −0.345 −0.482 −0.133 −0.244 −0.023
P-Value (β1 = β0) 0.0398 0.0000 0.0663 0.0005 0.8942

R2 0.73 0.77 0.75 0.84 0.79
Observations 836 841 871 565 247

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant.

Table 2 presents the results of all rounds of updating corresponding to each of the four
different events, splitting the quiz event into self or other performance. Examining updating
across domains, there are some differences in updating behavior, yet these differences do
not appear to fit a consistent pattern.

The most suggestive result is found comparing Columns 4 and 5, which respectively
examine updating for own versus other performance on the quiz. Regarding own perfor-
mance, there is asymmetric under-weighting of good news relative to bad news, significant
at the 1% level. Yet for the comparison group, other performance, there is no significant
asymmetry in updating.

This result is the opposite asymmetry of that found in Mobius et al (2014), but is
consistent with evidence from Ertac (2011). Yet, this result is greatly undermined when
comparing estimates across other events. Even larger asymmetries are found for the two
dice events, while a slightly smaller asymmetry can be seen for the weather event. Since
these events involve outcomes that subjects have no personal stake in (and there is no
difference for financial stakes), it is apparent that the differences in updating between own
and other performance may be driven by factors that affect information processing more
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broadly, i.e. general cognitive biases, rather than a specific psychological bias. Importantly,
these conclusions do not hinge on particular values of the prior, as even moderate values
of the prior are associated with the same asymmetry.24

Overall, I am unable to reject the hypothesis that the response to signals for the quiz
(self) event is the same as all other events pooled, whether aggregated or partitioned into
good/bad news versus just news subsamples. The evidence suggests that the observed
deviations from Bayes’ rule are not generated by differential responses to good or bad news
about performance, as they are present across other events that don’t involve performance
nor do they involve good or bad news. This suggests caution in interpreting differences
in updating patterns for a specific event as evidence of ego relevant psychological bias,
without examining for the presence of cognitive bias in other neutral contexts.

4.4 Investigating Signal Structure

The previous section found negative asymmetry across most contexts, independent of
whether signals were valenced. This result fits in a literature that has found evidence
of positive asymmetry regarding good news versus bad news, as in Mobius et al (2014) and
Eil and Rao (2011), no asymmetry as in Buser et al (2018) and Barron (2016), and finally
negative asymmetry found by Ertac (2011).25 As discussed, asymmetry in the framework
interacts in important ways with the weight on the prior log odds ratio, δ. Thus, the
framework itself, used also in Mobius et al (2014), Buser et al (2018), and Barron (2016),
can generate different interpretations of the data. Based on the results, I now consider
ex-post a further explanation that may account for these mixed results: signal structure.

One difference in the present paper compared with related studies is that signals are
skewed in the negative direction, due to events with average probabilities less than one-
half. Table E5 examines how subjects update in the last round given the sequence of
signals they faced. Subjects could receive three affirmative signals, two affirmative and
one negative, one affirmative and two negative, or three negative signals. One issue is that
for the Quiz (self) event, the distribution of signals faced may depend on ability as higher
scoring individuals are likely to receive more affirmative signals. If anything, excluding this
event results in even more pronounced patterns than presented here, as Appendix Table
E5 shows.

Contrary to the Bayesian prediction, there are clear differences in updating given dif-
ferent sequences of signals. Examining Columns 1 to 4 in Table E5, there is a pattern of
under-weighting signals that are received less often. This also means that when subjects
receive two affirmative and one negative signal, the asymmetry is reversed, as affirmative
signals receive more weight than negative signals. This is important, because given the
unlikely nature of many of the events in this experiment, the distribution of signals is more

24Appendix Table E2 presents these results for moderate values of the prior.
25Of mention is that Buser et al (2018) find evidence of positive asymmetry when considering updating

mistakes in the “wrong” direction.
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heavily weighted towards negative signals.
A striking pattern is found comparing Columns 5 and 6, which compares individuals

who received exactly the same sequence of signals in the first two rounds (one affirmative,
and one negative), but only differed in the order these signals were received.26 These show
that there is more negative asymmetry when the first signal is negative, rather than affir-
mative. This is surprising in light of both Bayes’ rule, as well as considering other known
cognitive biases, neither of which can explain this pattern. Appendix Table E6 presents
additional robustness checks for this finding, showing that individuals are asymmetric in
the positive direction after initially receiving an affirmative signal, and in the negative
direction after initially receiving a negative signal.

An implication of these findings is that the observed negative asymmetry may in part
be accounted for by the bias towards negative signals. While not conclusive, as the role
of differently sized priors and representativeness bias likely play a role, these patterns hint
at a different type of cognitive bias, undetected by previous work which traditionally has
not been focused on finding asymmetry.27 It resembles confirmation bias, see for example
Rabin and Schrag (1999), but relates to confirmation on signals rather than on priors. This
has potentially interesting implications, such as history dependence, where early sequences
of signals may exert undue influence on posteriors. An interesting implication is that
when individuals have opportunities to exit (e.g. a career or major) they may exit too
quickly when facing negative signals early on, or too late when facing an earlier sequence
of affirmative signals.

Moreover, this additional cognitive bias could help account for observed differences in
updating in recent work, operating through differences in signal structure. While signals in
Mobius et al (2014) and Eil and Rao (2011) are balanced between affirmative and negative
on average, in Ertac (2011) they were less likely to be affirmative.28 More generally, across
these papers there is also variation in the size of the prior as well as differences across
events themselves, suggesting that opposing findings may not be unfounded.

26Appendix Table E4 shows that updated beliefs after two rounds, i.e. the priors in the regression
analysis, do not significantly differ through mean or distribution tests.

27Priors are correlated with the types of signals received. Similarly, representativeness bias could account
for some of these findings, as when subjects are in the final round and have received either 1 affirmative, 2
negative or 2 affirmative, 1 negative, this matches the signal strength of two-thirds. Thus, one may expect
an asymmetric response. Appendix Table E7 shows that the asymmetry in the data remains even if one
considers only the first two updating rounds, where the representativeness heuristic cannot be employed.
Finally, if subjects update using absolute updating heuristics, e.g. updating by a fixed number of percentage
points, this could potentially generate data which look on average asymmetric given average priors less than
one-half. This type of strategy can be ruled out by examining whether the asymmetry is reversed for priors
greater than one-half. In Appendix Table E3, it can be seen that this is not the case. I thank an anonymous
referee for pointing out this possible explanation.

28In her paper, top (bottom) was less likely than not top (bottom). Nonetheless, because a signal of top
(bottom) would completely reveal the state, it is not clear that the same asymmetry should persist when
updating among the remaining possible states.
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Table 3: Updating Beliefs in Final Round By Distribution of Signals Received

Dependent Variable: Logit Posterior Belief

(1) (2) (3) (4) (5) (6)
Regressor 0 ‘+’ 1 ‘+’ 2 ‘+’ 3 ‘+’ 1st ‘−’; 1st ‘+’;

Signals Signal Signals Signals 2nd ‘+’ 2nd ‘−’

δ 0.898∗∗∗ 0.881∗∗∗ 0.918∗∗ 0.982 0.864∗∗∗ 0.886∗∗∗

(0.031) (0.025) (0.033) (0.068) (0.034) (0.033)
β1 0.305∗∗∗ 0.863∗ 1.214 0.788∗∗ 0.828

(0.099) (0.079) (0.152) (0.105) (0.127)
β0 1.126 0.967 0.557∗∗∗ 1.105 0.834∗

(0.104) (0.078) (0.106) (0.108) (0.095)

P-Value ( δ = 1 ) 0.0011 0.0000 0.0156 0.7958 0.0001 0.0006
P-Value ( β1 = 1 ) 0.0000 0.0828 0.1634 0.0453 0.1776
P-Value ( β0 = 1 ) 0.2279 0.6791 0.0000 0.3323 0.0830

Diff (β1 − β0) −0.662 0.306 −0.317 −0.006
P-Value (β1 = β0) 0.0000 0.0193 0.0439 0.9685

R2 0.77 0.79 0.78 0.78 0.81 0.81
Observations 253 454 270 68 266 249

Analysis uses OLS regression. Columns (1)-(4): K ‘+ Signals’ refers to K affirmative signals, out of a
possible maximum of 3. Columns (5)-(6): Compares individuals who received exactly 1 affirmative and 1
negative signal, only differing in the order these signals were received. Difference is significant from 1 at *
0.1; ** 0.05; *** 0.01. Robust standard errors clustered at individual level. R2 corrected for no-constant.

4.5 Conservatism, Ability, and Gender

In light of the results, I first briefly discuss the substantial conservatism, and next examine
the relationship of conservatism and asymmetry with ability and gender. Appendix Table
F2 examines only actively revised beliefs, and finds that conservatism is driven entirely by
the 41% of non-updates.

These non-updates are not driven by a small subset of conservative individuals: only 9%
of subjects update in all 12 rounds, and the median subject updates in 7 of 12 rounds.29

Table 4 presents some reduced form estimates of the factors that correlate with active
updates. An important factor appears to be the size of the prior, as subjects are less likely
to update for more extreme values of the prior. Looking across events, subjects update
less for the two dice events than for the other more subjective events, though this becomes

29Conservatism is correlated across events, within individuals, as found in Buser et al (2018). 30% of the
variation in non-updates can be explained by individual fixed effects.
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insignificant with individual fixed effects. Additionally, subjects update more frequently
in later updating rounds, the probability of an update is approximately 5% greater after
receiving the second signal, and 14% greater after the third. Financial payments in the
experiment appear to have no effect.

Table 4: Correlates of Active Updating Decision

Dependent Variable: Active Update

Regressor (1) (2) (3) (4)

Prior 1.596∗∗∗ 1.629∗∗∗ 1.576∗∗∗ 1.641∗∗∗

(0.136) (0.124) (0.154) (0.138)
Prior2 −1.678∗∗∗ −1.595∗∗∗ −1.695∗∗∗ −1.628∗∗∗

(0.145) (0.133) (0.154) (0.140)
Event = Hard Dice −0.012 −0.016

(0.022) (0.023)
Event = Weather 0.068∗∗ 0.011

(0.030) (0.028)
Event = Quiz (self) 0.053∗ 0.033

(0.030) (0.028)
Event = Quiz (other) 0.100∗∗∗ 0.010

(0.037) (0.034)
Round 2 0.045∗∗∗ 0.047∗∗∗

(0.016) (0.017)
Round 3 0.137∗∗∗ 0.138∗∗∗

(0.019) (0.019)
a = 10 0.024

(0.038)
a = 20 −0.011

(0.038)
Stake = 80 −0.006 −0.023

(0.019) (0.019)
Male 0.168∗∗

(0.066)
Percentile Score 0.199∗∗∗

(0.070)
Male × Percentile Score −0.236∗∗

(0.113)
Econ Major −0.014

(0.041)
Constant 0.347∗∗∗ 0.153∗∗∗

(0.025) (0.053)

Individual Fixed Effects NO YES NO YES

R2 0.06 0.37 0.10 0.38
Observations 3654 3654 3483 3654

Analysis uses OLS regression, dependent variable is binary for whether subject updated prior. Difference
is significant from zero at * 0.1; ** 0.05; *** 0.01. Robust standard errors clustered at individual level.
Omitted event is Easy Dice. Excludes belief revisions in the opposite direction predicted by Bayes’ rule.
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Examining Column 3 of Table 4, I also examine the relationship between active updating
and the percentile rank on the quiz. Subjects who rank one standard deviation higher
on the quiz are 5.8 percentage points more likely to update, significant at the 1% level.
Interestingly, the positive association between ability and updating propensity is entirely
driven by women. Men who rank poorly on the quiz update more frequently than equal
ability women, but scoring higher on the quiz increases the propensity to update for women,
the opposite of men.

In Table 5 I examine how gender and ability affect updating behavior more generally.
I do this by allowing heterogeneous response to signals by gender and percentile rank.30

Column 1 examines only interactions with gender, the second examines ability, while the
third interacts the two. Similar to Mobius et al (2014) and Ertac (2011) I find that women
update more conservatively than men, though this is no longer significant when interacted
with ability. I do not find any difference in asymmetry between men and women.31

There is also some weak evidence that ability is related to both conservatism and
asymmetry, which appears in Column 2, but is no longer significant in Column 3. Subjects
with higher ability appear to put more weight on affirmative signals, but not on negative
signals. The implication is that those at the top of the ability distribution would no longer
exhibit significant asymmetry, and would also be less conservative. This is in contrast to
the results of Mobius et al (2014) who found that neither conservatism nor asymmetry
were significantly correlated with cognitive ability.

Importantly, the pattern of greater conservatism exhibited by women seen in Column
1 is present across both valenced and neutral contexts. Thus while previous work from
Ertac (2011) and Mobius et al (2014) theorized that female conservatism may be related to
self-confidence, such conservatism is equally present in ego-irrelevant contexts.32 Moreover,
when comparing the deviations from Bayes’ rule of final beliefs, women are only one-tenth of
one percentage point further from Bayes’ rule than men, a difference that is not statistically
significant.

30One could also interact gender and ability with the weight on the log prior odds ratio, δ. I do not
report these estimates, but interactions with δ are not significant.

31One interesting result is that unlike evidence from Mobius et al (2014) and Buser et al (2018) (see
Barber and Odean (2001) for an earlier discussion), women are not less confident about their performance
than men on the quiz.

32Note that if gender differences in updating persist across contexts, the same implications remain: high
ability women could end up less confident. An important direction for future research is to understand the
source of differences in information processing by gender.
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Table 5: Updating Beliefs by Ability and Gender

Dependent Variable: Logit Posterior Belief

(1) (2) (3)
Regressor Gender Ability Gender × Ability

δ 0.910∗∗∗ 0.914∗∗∗ 0.910∗∗∗

(0.010) (0.009) (0.010)
β1 0.520∗∗∗ 0.433∗∗∗ 0.394∗∗∗

(0.047) (0.076) (0.103)
β0 0.740∗∗∗ 0.776∗∗∗ 0.728∗∗∗

(0.048) (0.071) (0.097)
β1× Male 0.141∗ 0.135

(0.077) (0.159)
β0× Male 0.160∗∗ 0.198

(0.065) (0.142)
β1× Percentile 0.315∗∗ 0.276

(0.133) (0.190)
β0× Percentile 0.037 0.028

(0.120) (0.169)
β1× Male × Percentile −0.031

(0.270)
β0× Male × Percentile −0.078

(0.250)

R2 0.84 0.84 0.84
Observations 3199 3360 3199

Analysis uses OLS regression. Difference is significant from 0 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant.

5 Concluding Discussion

In this experiment I set out to examine whether differences exist in how people process
information across varied contexts, focusing especially on response to valenced versus value
neutral information. Recent evidence from economics and neuroscience suggests the pos-
sibility of additional psychological biases in updating when information contains good or
bad news, beyond any cognitive biases that have been observed when information is value
neutral.

Unlike some of the findings and claims of previous literature, I do not find evidence
of asymmetric over-weighting of good versus bad news. In fact I find evidence of the
opposite asymmetry, as in Ertac (2011), yet such patterns are similarly present comparing
information processing across valenced or value neutral contexts. Related, while there
are differences in updating by gender, as found in to previous studies, these patterns in
updating are present across contexts. Thus updating appears similar, whether it involves
news regarding events that directly affect subjects’ wellbeing, or whether it involves only
information about neutral events. This result suggests that asymmetric updating found in
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previous studies is not a universal property of updating in ego relevant contexts. Moreover,
there is evidence that deviations from Bayes’ rule may reflect more general cognitive biases,
rather than psychological biases in processing good or bad news.

While these results differ from some of the previous literature, they do suggest a possible
unifying feature. The distribution of signals received appears to affect how individuals
update beliefs, a type of confirmation bias which previously went undocumented. Thus,
differences in the direction of asymmetry, e.g. between, Mobius et al (2014) and Eil and
Rao (2011), and Ertac (2011), might be explained by differences in signal content. As
interest in asymmetry is recent, differences in updating across studies is not unfounded,
and the paucity of work on asymmetry in value neutral contexts has hindered our ability
to make relevant comparisons.33

Overall, while I find that many predictions of the Bayesian model are rejected in the
pooled data, these discrepancies are small in magnitude. The average posterior belief is less
than one percentage point away from the posterior predicted by Bayes’ rule. After three
rounds of updating, subjects are less than two percentage points away from the posterior
that would have resulted had they used Bayes’ rule all the way through, and the final
posteriors of men and women are statistically indistinguishable.

Overall, this paper presents counter evidence to recent studies suggesting that psy-
chologically plausible biases may arise in value relevant contexts, through the asymmetric
processing of good news relative to bad news. Such evidence is necessary to discipline
existing and future theoretical work on updating behavior, in order to better understand
how individuals process information.
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Appendix

A Hedge Proof Design Details

Payoffs are determined in the following way, also described in Figure A1, and earlier utilized
by Blanco et al (2010).34 In order to ensure that individuals have no incentive to hedge
their probability reports, the world is partitioned into two disjoint states, the accuracy
state and the prize state.35

With probability 0.5 the individual is paid solely according to her reported belief π̃
about whether event E occurred using the incentive compatible lottery method to elicit
beliefs with an accuracy payment of a > 0 (accuracy state).

In the other state occurring with probability 0.5, the individual receives a guaranteed
payment ā ≥ a36 and receives an additional $80 if E occurs, but receives nothing extra if
E does not occur (prize state). Her report of π̃ is no longer relevant in this prize state.

To be clear, two types of hedging are of concern in this experiment. The first is is
hedging within the accuracy state, which is solved through use of the lottery method. The
second is hedging across accuracy and prize states, which is solved through partitioning. In
isolation, the lottery method is incentive compatible under the relatively weak assumption
of probabilistic sophistication. However, the experiment design introduces further elements
of randomization through the partitioning of the accuracy and prize states, and through
randomly selection one decision for payment.

As Blanco et al (2010) note, partitioning the world into an accuracy and a prize state
is akin to the standard procedure of introducing a new lottery and randomly selecting one
lottery for payment.37 Thus incentive compatibility in the broader experiment design holds
for the class of preferences where payment is made by random selection of one task (or
lottery). This is true when one assumes a statewise monotonicity condition, see Azrieli
et al (2018). This condition is equivalent to saying that subjects never choose dominated
gambles, independent of other states.38

Two further issues on incentive compatibility deserve some mention here. First, with

34It was also independently suggested to me by Christopher Woolnough, who I credit for the design in
this paper.

35Hedging will be present whenever utility is not linear, for example with a concave utility function and
a positive stake in an event an individual would prefer to report a lower than truthful π̃, since this will
smooth consumption over the different states of the world. Karni and Safra (1995) show that without this
partition, no elicitation procedure exists that induces truthful reporting, a fact that is sometimes overlooked
in the experimental literature; see Armantier and Treich (2013).

36The payment of ā is to ensure that the prize state is preferred to the accuracy state, required for an
earlier theoretical extension; it is not necessary for any of the analysis.

37In this case the other lottery is degenerate, as the individual does not make an active choice, but simply
has the opportunity to receive a payment.

38The assumption of monotonicity is not completely innocuous. Assuming further that subjects reduce
compound lotteries, it implies that subject’s preferences must conform with expected utility, as detailed in
Azrieli et al (2018).
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financial incentives it is possible to disentangle accuracy and prize payments. However, if
subjects gain utility from beliefs about their ability, evidently the experiment is not able
to create an analogous partition. Thus there may be distortions in elicited beliefs about
performance on the quiz - note however that most of the results in this paper do not hinge
on the inclusion of the quiz (Self) event.

Second, there is a potential concern which arises from paying only for the accuracy or
the prize state, but never both. The implication is that a subject in the experiment knows
with certainty that whenever her belief report is relevant, she will not have an opportunity
to win the prize. Or vice-versa, whenever she has a chance to win the prize, her belief
report is not relevant.39

In this case, the procedure would correctly capture the subject’s belief about the event
occurring in the event the prize is irrelevant, but the counterfactual belief would not be
observed. If such belief patterns are occurring then it remains possible that subjects
may hold biased beliefs, but the experiment is not designed to capture them. Under the
assumption of monotonicity above, this does not cause an issue as subjects are assumed to
form consistent beliefs about an event, which do not depend on the state.40

39I thank an anonymous referee for bringing this concern to my attention.
40Barron (2016) elicits beliefs about events with financial stakes without separating prize and accuracy

payments (but addressing the hedging problem retroactively, using the “truth serum” of Offerman et al
(2009)). He does not find evidence of differential updating patterns with financial stakes, which suggests
that this may not be a concern.
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Figure A1: Illustration of Hedge Proof Design
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reported belief π̃ and whether E occurred, according to the lottery method.

Nature determines outcome of binary event E. Individual submits report π̃ without know-
ing outcome of E, and payoff is determined according to the lottery method elicitation
procedure.

B Updating Framework: By Event/Stake/Accuracy Payment

Here I replicate the primary analysis found in Table 1, looking at each of the financial stake
and accuracy payment conditions separately. As can be seen in Table B1, there is no clear
pattern that emerges within either the accuracy payment or within the financial stake
conditions respectively. A formal statistical test confirms that I cannot reject equality
between the $0 and $80 financial stake conditions, nor between the $3, $10, and $20
accuracy payment conditions. This analysis suggests that different payments for accuracy
do not alter updating behavior. Similarly, holding a large financial stake in an event does
not alter updating behavior relative to holding no stake.
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Table B1: Updating Beliefs for All Events: By Accuracy Payment and Financial Stake

Dependent Variable: Logit Posterior Belief

(1) (2) (3) (4) (5) (6)
Regressor Stake = 0 Stake = 80 Acc = 3 Acc = 10 Acc = 20 Total

δ 0.910∗∗∗ 0.918∗∗∗ 0.920∗∗∗ 0.922∗∗∗ 0.898∗∗∗ 0.914∗∗∗

(0.012) (0.014) (0.017) (0.014) (0.016) (0.009)
β1 0.587∗∗∗ 0.588∗∗∗ 0.560∗∗∗ 0.662∗∗∗ 0.540∗∗∗ 0.588∗∗∗

(0.045) (0.043) (0.054) (0.063) (0.059) (0.034)
β0 0.807∗∗∗ 0.780∗∗∗ 0.774∗∗∗ 0.749∗∗∗ 0.861∗ 0.793∗∗∗

(0.047) (0.047) (0.066) (0.060) (0.074) (0.038)

P-Value (δ = 1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
P-Value (β1 = 1) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
P-Value (β0 = 1) 0.0001 0.0000 0.0008 0.0001 0.0616 0.0000

Diff (β1 − β0) −0.220 −0.192 −0.214 −0.086 −0.321 −0.205
P-Value (β1 = β0) 0.0001 0.0011 0.0042 0.2112 0.0000 0.0000

R2 0.83 0.84 0.84 0.84 0.82 0.84
Observations 1704 1656 1128 1143 1089 3360

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant.

In Table B2 I replicate the primary analysis found in Table 2, but excluding any ob-
servations where an individual had a financial stake of $80. There do not appear to be
any consistent differences in this subsample. In the final column of Table B2 I use the
same sampling procedure as Mobius et al (2014), in order to provide a more comparable
estimation to their study for the Quiz event. One can see that the sampling procedure
does not significantly alter the pattern of observed results.
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Table B2: Updating Beliefs Within Events: No Financial Stake Only

Dependent Variable: Logit Posterior Belief

(1) (2) (3) (4) (5) (6)
Regressor Easy Dice Hard Dice Weather Quiz (S) Quiz (O) Quiz (M. et al)

δ 0.839∗∗∗ 0.897∗∗∗ 0.909∗∗∗ 0.924∗∗ 0.894∗ 0.918∗∗

(0.049) (0.028) (0.027) (0.030) (0.055) (0.035)
β1 0.317∗∗∗ 0.430∗∗∗ 0.683∗∗∗ 0.616∗∗∗ 0.816 0.714∗∗∗

(0.146) (0.092) (0.089) (0.078) (0.200) (0.090)
β0 1.073 0.815∗ 0.783∗∗∗ 0.799∗∗ 0.778 0.917

(0.171) (0.109) (0.067) (0.087) (0.176) (0.099)

P-Value (δ = 1) 0.0013 0.0004 0.0009 0.0138 0.0603 0.0226
P-Value (β1 = 1) 0.0000 0.0000 0.0005 0.0000 0.3623 0.0021
P-Value (β0 = 1) 0.6711 0.0906 0.0014 0.0224 0.2144 0.4049

Diff (β1 − β0) −0.755 −0.384 −0.100 −0.184 0.038 −0.204
P-Value (β1 = β0) 0.0095 0.0136 0.3791 0.0472 0.9040 0.0521

R2 0.66 0.77 0.73 0.83 0.79 0.84
Observations 435 421 447 294 107 225

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant. Includes only updated beliefs about
events where individuals did not hold any additional financial stake in the outcome.

C Additional Tests of Bayes’ Rule: Invariance, Sufficiency, and Stability

In this section I investigate three additional properties that are satisfied when updated
beliefs follow Bayes’ rule. First, the structure of Bayes’ rule implies a sufficiency condition,
that priors are sufficient statistics for all the information contained in past signals. In other
words, after controlling for prior beliefs, lagged information does not significantly predict
posterior beliefs. To examine whether updating behavior can be shown to satisfy the
sufficiency condition I follow Mobius et al (2014) and include lagged signals as independent
variables. Table C1 shows the regressions that include these lagged signals, using only
actively revised beliefs. There is some evidence that overall, the updating process may not
satisfy the sufficiency condition, as the first signal received has a significant effect on belief
updating in round 3.41

The next property Bayes’ rule satisfies is stability: that updating remains stable across
time. Looking across the three updating rounds in Table C2, there appear to be differences.
Overall, I can reject equality across rounds 1 to 3 for δ, β1, β0 at conventional levels. This

41While Mobius et al (2014) do not reject sufficiency, it is worth noting that the ratio of the values of
coefficients on lagged signals to current signals is of the same magnitude.
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Table C1: Examining Sufficiency

Dependent Variable: Logit Posterior Belief

(1) (2)
Regressor Round 2 Round 3

δ 0.890∗∗∗ 0.880∗∗∗

(0.027) (0.023)
β1 1.030∗∗∗ 1.247∗∗∗

(0.065) (0.074)
β0 1.287∗∗∗ 1.347∗∗∗

(0.064) (0.066)
βt−1 0.052 0.048

(0.045) (0.042)
βt−2 0.164∗∗∗

(0.042)

R2 0.82 0.82
Observations 640 670

Analysis uses OLS regression. Difference is significant from zero at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant. The sample is restricted to include only
subjects who actively revised their beliefs in the direction predicted by Bayes’ rule. βt−k refers to the kth

lagged signal.

provides some evidence that updating is not stable across rounds. Finally, the invariance
property is said to hold when δ = 1, that is the change in logit beliefs depends only on
past signals. δ = 1 is rejected in the data at the 1% level. However, despite these three
conditions not being met in the data, it is important to note that the magnitude of these
deviations is reasonably small, in the sense that the resulting posteriors are very close to
their Bayesian counterparts.42

D Updating by Sequence of Signals Observed

Figure D1 presents an aggregate view of asymmetry, by plotting average posteriors in
response to different sequences of observed signals, for both the aggregate data, and for
moderate priors between 0.4 and 0.6. One can note that the asymmetry in the framework,
observed in Table 1, is not visibly present in the aggregate data. The reason is that the
weight on the log odds ratio of prior beliefs is not unity. δ < 1 manifests itself as over-

42As in Mobius et al (2014) a concern is that β1 and β0 are functions of prior beliefs, but that effects
cancel out to give a coefficient of δ closer to 1. To examine if this is a potential issue I check whether there
are significant interaction effects between receiving affirmative signals, and the prior. These interactions
are never significant at any reasonable significance level, indicating that this is not a problem for the data.
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Table C2: Examining Stability

Dependent Variable: Logit Posterior Belief

Regressor Round 1 Round 2 Round 3 All Rounds

δ 0.884∗∗∗ 0.926∗∗∗ 0.935∗∗∗ 0.914∗∗∗

(0.014) (0.017) (0.016) (0.009)
β1 0.468∗∗∗ 0.537∗∗∗ 0.800∗∗∗ 0.588∗∗∗

(0.047) (0.046) (0.062) (0.034)
β0 0.687∗∗∗ 0.788∗∗∗ 0.914 0.793∗∗∗

(0.045) (0.053) (0.055) (0.038)

P-Value (δ = 1) 0.0000 0.0000 0.0001 0.0000
P-Value (β1 = 1) 0.0000 0.0000 0.0015 0.0000
P-Value (β0 = 1) 0.0000 0.0001 0.1205 0.0000

Diff (β1 − β0) −0.219 −0.250 −0.114 −0.205
P-Value (β1 = β0) 0.0002 0.0003 0.1592 0.0000

R2 0.85 0.84 0.83 0.84
Observations 1180 1135 1045 3360

P-Value [Chow-test] for δ (Rounds 1-3) 0.0260
P-Value [Chow-test] for β1 (Rounds 1-3) 0.0000
P-Value [Chow-test] for β0 (Rounds 1-3) 0.0005

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant.

weighting of probabilities for priors < 0.5, the majority of the data of this experiment.
This masks the asymmetry in the framework, since it results in an upward shift of posterior
beliefs, independent of the types of signals received.43

43There is some visible asymmetry when restricting priors to be moderate, between 0.4 and 0.6. This is
intuitive, as the distortionary weighting of δ is weakest around 0.5, and hence posteriors are more closely
matching the response to signals observed in the framework.
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Figure D1: Updating in Response to Observed Signals
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Average belief update following a sequence of cumulative signals (numbered on the horizontal axis), distin-
guishing cumulative signals in the positive direction (blue) from negative (red), as well as neutral (purple).
For example, when the number of cumulative signals is 2, the possibilities are that a subject received 2
positive signals, 1 positive 1 negative, or 2 negative signals. The Bayesian benchmark is indicated by a
black diamond.

E Robustness Checks

E.1 Different Values of the Prior

Of interest is to what extent the results in the paper could be explained by the fact that
priors are on average lower than one-half.

Figure E1 presents the evolution of beliefs for different values of the prior (first reported
beliefs). Updating appears conservative for low values of the prior, well calibrated for
moderate values, and too responsive for high values of the prior. These patterns are
suggestive that some of the differences in updating observed across events are driven by
differences in average values of the prior, rather than differences in the events themselves. In
particular, elicited priors for the two dice events and the quiz (other) event are significantly
lower than those for the weather event and the quiz (self) event, and additionally exhibit
substantially greater levels of conservatism.

Table E1 examines the primary results of Table 1, but restricting priors to lie between
0.4 and 0.6. From the table, one is able to see that the results are very similar. Negative
signals continue to be weighted significantly more than positive signals, and one cannot
reject that the difference in any of the parameters in the valenced contexts (good/bad
news) are the same as those found in the neutral (just news) contexts. Analogously, Table
E2 presents the results of Table 2 with the same prior restrictions, finding no differences
in the patterns of updating.

Table E3 splits the sample into priors less than one half or greater than one-half. There,
one can see similar asymmetries across the two subsamples. One finding of note is that
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the value of δ is very close to one in Column (2), when priors are greater than one-half.
In fact, this has implications for interpreting differences between patterns in the empirical
framework and the raw data. It implies that an over-weighting of priors less than one half
occurs (since δ < 1 in this case), but no corresponding under-weighting of priors greater
than one-half is occurring (since δ is approximately 1 in this case).
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Figure E1: Evolution of Beliefs By Value of the Prior
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All events and all stake conditions, sample restricted to individuals updating with indicated prior. The
path of beliefs starting from the prior (period 1), and after each sequential signal (periods 2 through 4).
Average individual responses are the blue solid line, the Bayesian benchmark is marked as the black dashed
line. Error bands represent 95% confidence intervals. N = {798, 185, 297} average per round, respectively
for (a)-(c).
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Table E1: Updating Beliefs for All Events: 40% ≤ Prior ≤ 60%

Dependent Variable: Logit Posterior Belief

(1) (2) (3)
Regressor Good/Bad News Just News All

δV 0.897
(0.091)

βV1 0.586∗∗∗

(0.085)
βV0 0.777∗∗∗

(0.078)
δN 0.918

(0.055)
βN1 0.576∗∗∗

(0.102)
βN0 0.755∗∗

(0.107)
δ 0.908∗

(0.052)
β1 0.581∗∗∗

(0.067)
β0 0.770∗∗∗

(0.066)

P-Value (δ = 1) 0.2598 0.1444 0.0790
P-Value (β1 = 1) 0.0000 0.0001 0.0000
P-Value (β0 = 1) 0.0053 0.0255 0.0006

Diff (β1 − β0) −0.191 −0.179 −0.188
P-Value (β1 = β0) 0.0219 0.2074 0.0118

R2 0.59 0.65 0.61
Observations 297 183 480

P-Value [Chow-test] for δV = δN 0.8400
P-Value [Chow-test] for βV1 = βN1 0.9367
P-Value [Chow-test] for βV0 = βN0 0.8578
P-Value [Chow-test] for (βV1 − βV0 )− (βN1 − βN0 ) 0.9403

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant.
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Table E2: Updating Beliefs Within Events: 40% ≤ Prior ≤ 60%

Dependent Variable: Logit Posterior Belief

(1) (2) (3) (4) (5)
Regressor Easy Dice Hard Dice Weather Quiz (S) Quiz (O)

δ 0.828∗∗ 0.832∗∗ 1.036 0.768 1.069
(0.077) (0.076) (0.120) (0.181) (0.093)

β1 0.311∗∗∗ 0.337∗∗∗ 0.740∗∗ 0.639∗∗∗ 0.552∗∗

(0.156) (0.093) (0.111) (0.122) (0.217)
β0 0.934 0.886 0.782∗∗ 0.694∗∗∗ 0.505∗∗∗

(0.260) (0.178) (0.088) (0.110) (0.126)

P-Value (δ = 1) 0.0366 0.0344 0.7676 0.2093 0.4682
P-Value (β1 = 1) 0.0002 0.0000 0.0216 0.0052 0.0596
P-Value (β0 = 1) 0.8019 0.5254 0.0159 0.0084 0.0018

Diff (β1 − β0) −0.623 −0.549 −0.042 −0.055 0.047
P-Value (β1 = β0) 0.0674 0.0032 0.6916 0.6816 0.8545

R2 0.67 0.62 0.61 0.47 0.80
Observations 64 81 189 111 35

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant.
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Table E3: Priors Greater or Less than One Half

Dependent Variable: Logit Posterior Belief

(1) (2) (3)
Regressor Prior > 1

2 Prior < 1
2 All

δ 0.899∗∗∗ 0.987 0.914∗∗∗

(0.016) (0.036) (0.009)
β1 0.542∗∗∗ 0.466∗∗∗ 0.588∗∗∗

(0.049) (0.064) (0.034)
β0 0.819∗∗∗ 0.888 0.793∗∗∗

(0.058) (0.069) (0.038)

P-Value (δ = 1) 0.0000 0.7085 0.0000
P-Value (β1 = 1) 0.0000 0.0000 0.0000
P-Value (β0 = 1) 0.0021 0.1072 0.0000

Diff (β1 − β0) −0.277 −0.422 −0.205
P-Value (β1 = β0) 0.0011 0.0001 0.0000

R2 0.69 0.65 0.84
Observations 2253 927 3360

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant. First column includes updates in direction
predicted by Bayes’ rule. Second column replaces boundary probabilities with 0.01 or 0.99 respectively.
Third column is entire sample.
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E.2 Additional Results for Investigating Signal Structure

Table E5 presents the analogous analysis to Table 3 in the paper, but omitting the Quiz
(Self) event, since signals regarding the quiz event depend on ability, a potential confound.
Regarding Columns 1 to 4, the results are by and large unchanged. Regarding Columns
5 and 6, if anything, the results present even stronger evidence of differential asymmetry
between those who received exactly the same sequence of signals (1 affirmative and 1
negative), but only differed in the order these were received. In Column 5 the negative
asymmetry is significant at the 5% level, while in Column 6 the positive asymmetry is not
significant at conventional levels. However, the difference in the asymmetry is statistically
significant at the 5% level (Chow Test).

The result that levels of asymmetry in Columns 5 and 6 are different, solely based on
the order of signals received is highly surprising. This result is not driven by differences in
the average or even the distribution of prior beliefs for these individuals. Table E4 presents
tests of equality for the prior beliefs used in Tables 3 and E5 (note these are updated beliefs
after receiving two rounds of signals). From these tests, one can see that prior beliefs are
quite similar, as one would expect given individuals who received identical signals in the
past. Excluding the quiz, in fact leads to slightly improved balance across the two groups.

Table E4: Comparing Beliefs for Individuals in Columns 5 and 6 in Tables 3 and E5

Equality tests 1st ‘−’; 1st ‘+’;
Difference

of prior beliefs 2nd ‘+’ 2nd ‘−’

Incl. Quiz (Table 3)

Mean 0.346 .3733 -0.027
Median 0.250 0.260 -0.010
Std. Dev. 0.274 0.300
Observations 289 270

Wilcoxon rank-sum (p-value) 0.450
Kolmogorov-Smirnov (p-value) 0.365

Excl. Quiz (Table E5)

Mean 0.323 .334 -0.011
Median 0.250 0.200 -0.050
Std. Dev. 0.266 0.290
Observations 243 215

Wilcoxon rank-sum (p-value) 0.880
Kolmogorov-Smirnov (p-value) 0.841

Table E6 presents additional specifications intended to examine the observed bias re-
lated to signal structure discussed in Section 4.4. Columns 1 and 2 present updating in
the second round, after individuals had received two signals in total. It separates those
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who received a negative (−) signal as their previous (first) signal (Column 1), with those
who received previously an affirmative (+) signal (Column 2). Columns 3 and 4 present
analogous regressions for updating in the third and final round, given the previous (second)
signal.

Confirming earlier observed patterns, and contrary to the Bayesian prediction, Table
E6 shows a significant negative asymmetry in Column 1 (following a negative signal), and a
positive (though not significant) asymmetry in Column 2 (following an affirmative signal).
In Columns 3 and 4 the asymmetry is negative in both cases, though it is worth noting
that the difference in asymmetry between the two regressions is of similar magnitude.44

Table E5: Updating Beliefs in Final Round By Distribution of Signals Received (Exclud-
ing Quiz (self))

Dependent Variable: Logit Posterior Belief

(1) (2) (3) (4) (5) (6)
Regressor 0 ‘+’ 1 ‘+’ 2 ‘+’ 3 ‘+’ 1st ‘−’; 1st ‘+’;

Signals Signal Signals Signals 2nd ‘+’ 2nd ‘−’

δ 0.899∗∗∗ 0.890∗∗∗ 0.915∗∗ 0.988 0.860∗∗∗ 0.906∗∗∗

(0.033) (0.025) (0.038) (0.077) (0.035) (0.036)
β1 0.323∗∗∗ 0.903 1.244 0.750∗∗ 0.973

(0.103) (0.090) (0.171) (0.117) (0.158)
β0 1.106 0.920 0.659∗∗∗ 1.090 0.757∗∗

(0.118) (0.081) (0.124) (0.113) (0.102)

P-Value (δ = 1) 0.0023 0.0000 0.0261 0.8820 0.0001 0.0097
P-Value (β1 = 1) 0.0000 0.2817 0.1588 0.0339 0.8644
P-Value (β0 = 1) 0.3719 0.3273 0.0064 0.4264 0.0183

Diff (β1 − β0) −0.597 0.244 −0.340 0.216
P-Value (β1 = β0) 0.0001 0.1053 0.0439 0.2502

R2 0.77 0.81 0.76 0.76 0.82 0.81
Observations 206 380 220 60 225 199

Analysis uses OLS regression. Columns (1)-(4): K ‘+ Signals’ refers to K affirmative signals, out of a
possible maximum of 3. Columns (5)-(6): Compares individuals who received exactly 1 affirmative and 1
negative signal, only differing in the order these signals were received. Difference is significant from 1 at *
0.1; ** 0.05; *** 0.01. Robust standard errors clustered at individual level. R2 corrected for no-constant.

44Given the patterns observed here and in Section 4.4, more negative asymmetry is to be expected in the
third rather than second round, as the average proportion of negative signals received is greater.
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Table E6: Updating Beliefs by Sequences of Signals Received

Dependent Variable: Logit Posterior Belief

After 2nd Signal (Round 2) After 3rd Signal (Round 3)

(1) (2) (3) (4)
Regressor 1st Signal ‘−’ 1st Signal ‘+’ 2nd Signal ‘−’ 2nd Signal ‘+’

δ 0.910∗∗∗ 0.913∗∗∗ 0.890∗∗∗ 0.878∗∗∗

(0.019) (0.023) (0.026) (0.025)
β1 0.372∗∗∗ 0.746∗∗∗ 0.328∗∗∗ 0.811∗∗

(0.053) (0.082) (0.091) (0.083)
β0 0.887∗ 0.679∗∗∗ 1.142 0.971

(0.060) (0.071) (0.094) (0.079)

P-Value (δ = 1) 0.0000 0.0002 0.0000 0.0000
P-Value (β1 = 1) 0.0000 0.0022 0.0000 0.0234
P-Value (β0 = 1) 0.0590 0.0000 0.1332 0.7139

Diff (β1 − β0) −0.514 0.067 −0.814 −0.160
P-Value (β1 = β0) 0.0000 0.5398 0.0000 0.1499

R2 0.83 0.83 0.78 0.81
Observations 700 435 377 515

Analysis uses OLS regression. ‘+’ refers to affirmative signal, ‘−’ to negative. Difference is significant
from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard errors clustered at individual level. R2 corrected for
no-constant.

E.3 Excluding the Last Round

Table E7 presents the analogous analysis to Table 1 in the main paper, excluding the last
round. The motivation for excluding the last round of updating is to understand how
much of the asymmetry in the data could be explained by representativeness bias. In
the final round, subjects have potentially observed one of the two sets of “representative”
signal sequences - i.e. sequences that exactly match the strength of signals. Two negative
and one affirmative, exactly matches the expected number of signals for an event that did
not occur, while two affirmative and one negative exactly matches the expected number
of signals for an event that did occur. The representativeness bias would be to bias the
posterior towards 0 in the first case, and towards 1 in the second case. In the framework this
could be manifested as an exaggerated response to signals that go in the majority direction,
and a conservative response to signals that go against the majority. By eliminating the
final round, subjects cannot make use of the representativeness heuristic.

From Table E7 it is possible to see that the observed negative asymmetry persists in
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earlier updating rounds. Thus, while representativeness bias may play a role, it cannot
explain the negative asymmetry observed in the data.

Table E7: Updating Beliefs for All Events: Rounds 1-2 only

Dependent Variable: Logit Posterior Belief

(1) (2) (3)
Regressor Good/Bad News Just News All

δV 0.910∗∗∗

(0.014)
βV1 0.528∗∗∗

(0.042)
βV0 0.722∗∗∗

(0.045)
δN 0.895∗∗∗

(0.017)
βN1 0.454∗∗∗

(0.050)
βN0 0.762∗∗∗

(0.060)
δ 0.904∗∗∗

(0.011)
β1 0.500∗∗∗

(0.035)
β0 0.736∗∗∗

(0.041)

P-Value (δ = 1) 0.0000 0.0000 0.0000
P-Value (β1 = 1) 0.0000 0.0000 0.0000
P-Value (β0 = 1) 0.0000 0.0001 0.0000

Diff (β1 − β0) −0.194 −0.308 −0.236
P-Value (β1 = β0) 0.0002 0.0000 0.0000

R2 0.85 0.83 0.84
Observations 1343 972 2315

P-Value [Chow-test] for δV = δN 0.4444
P-Value [Chow-test] for βV1 = βN1 0.2195
P-Value [Chow-test] for βV0 = βN0 0.5313
P-Value [Chow-test] for (βV1 − βV0 )− (βN1 − βN0 ) 0.1709

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant.
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F Sampling Robustness Checks

F.1 Sample Restrictions

Table F1 examines the impact of how restricting the sample alters updating estimates in
the main framework. The first column presents the main analysis (Column 3 in Table 1),
but includes observations where belief updates go in the opposite direction that Bayes’
rule predicts. The second column replaces boundary observations of 0 or 1 with 0.01 or
0.99 respectively. In Table 1 these were dropped. Finally the third column also truncates
boundary observations, and includes updates in the wrong direction. The third column
thus presents the full data, with no exclusions.

Table F1: Relaxing Sample Restrictions and Full Sample

Dependent Variable: Logit Posterior Belief

(1) (2) (3)
Regressor Include Wrong Dir. Include Boundary Include All

δ 0.910∗∗∗ 0.914∗∗∗ 0.914∗∗∗

(0.010) (0.010) (0.011)
β1 0.506∗∗∗ 0.727∗∗∗ 0.649∗∗∗

(0.033) (0.045) (0.045)
β0 0.714∗∗∗ 0.903∗∗ 0.805∗∗∗

(0.038) (0.045) (0.045)

P-Value (δ = 1) 0.0000 0.0000 0.0000
P-Value (β1 = 1) 0.0000 0.0000 0.0000
P-Value (β0 = 1) 0.0000 0.0306 0.0000

Diff (β1 − β0) −0.208 −0.176 −0.156
P-Value (β1 = β0) 0.0000 0.0003 0.0022

R2 0.81 0.81 0.79
Observations 3537 3654 3840

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant. First column includes updates in direction
predicted by Bayes’ rule. Second column replaces boundary probabilities with 0.01 or 0.99 respectively.
Third column is entire sample.
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F.2 Restricting to Active Updates

Table F2 presents the analysis of Table 1, but restricting the sample to only active updates.
The results show that subjects appear to suffer from the opposite bias of conservatism, as
they are over-responsive to information. This is largely drive by response to a negative
signal, but does not appear to differ between good or bad news, versus just news. As such,
symmetry can be rejected at the 1% level.

Table F2: Active Updates: Reponse to Contemporaneous Signal

Dependent Variable: Logit Posterior Belief

(1) (2) (3)
Regressor Good/Bad News Just News All

δ 0.882∗∗∗ 0.863∗∗∗ 0.873∗∗∗

(0.018) (0.022) (0.014)
β1 1.060 1.092 1.074

(0.052) (0.071) (0.047)
β0 1.295∗∗∗ 1.323∗∗∗ 1.305∗∗∗

(0.050) (0.071) (0.046)

P-Value (δ = 1) 0.0000 0.0000 0.0000
P-Value (β1 = 1) 0.2529 0.1962 0.1138
P-Value (β0 = 1) 0.0000 0.0000 0.0000

Diff (β1 − β0) −0.235 −0.232 −0.231
P-Value (β1 = β0) 0.0002 0.0121 0.0000

R2 0.81 0.79 0.80
Observations 1121 799 1920

Analysis uses OLS regression. Includes only active updates. Difference is significant from 1 at * 0.1; **
0.05; *** 0.01. Robust standard errors clustered at individual level. R2 corrected for no-constant.

G Aggregate Updating by Event/Stake/Accuracy Payment

In this section I examine patterns in updating behavior for different events and financial
stake conditions. Recall that the lump sum payment used for the lottery method was
randomized at the session level, and was either $3, $10, or, $20. The financial stake was
randomized at the individual-event level, and was either $0 or $80 with 50% probability
respectively. The financial stake was an amount of money that would be gifted to the
subject if the event occurred and had been randomly selected for payment.
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In Figure G1 I examine the analog to Figure 4, for each of the two financial stake
conditions ($0 and $80), as well as each of the three accuracy payment conditions ($3, $10,
$20). While different values of the accuracy payment do not affect whether news is good
or bad, note that having an $80 stake in an event necessitates that signals contain either
good or bad news.

From Figure G1 there does not appear to be any sizeable differences in updating behav-
ior across these different payment conditions. The results on differences between a stake of
$0 versus $80 are consistent with Barron (2016), who does not find evidence of asymmetry
when individuals have a financial stake in an event. Note also that the prior varies slightly
by payment conditions; updating patterns by prior are presented in Figure E1 below.

Next, in Figure G2 I present the analogous analysis for each of the four events, with
the quiz event split into the self and other treatments. For the two dice events, which
involved the probability that particular outcomes from rolls of either two or four dice had
occurred, updating appears to be more conservative than the aggregate. The pattern is also
seen when individuals estimate the probability that another randomly selected, anonymous
individual in the room had scored in the top 15% on the earlier taken quiz (quiz: other
performance).

For the quiz (self performance) event, which involved the probability that the individual
believed they scored in the top 15% of quiz takers, updating appears to adhere more closely
to the Bayesian prediction. This is also true for the weather event, which occurred when
subjects had correctly estimated the mean temperature ± 5 degrees F in New York City on
a randomly selected day in the previous calendar year. In the aggregate, updating about
own performance does not appear to deviate much from the Bayesian prediction.
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Figure G1: Evolution of Beliefs By Stake and Accuracy Conditions
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(e) Accuracy Payment = $20

The path of beliefs starting from the prior (period 1), and after each sequential signal (periods 2 through
4). Average individual responses are the blue solid line, the Bayesian benchmark is marked as the black
dashed line. Bayesian benchmark takes prior beliefs, and subsequently uses Bayes’ rule to update beliefs.
Error bands represent 95% confidence intervals. Note the potential difference in the range of prior beliefs,
on the vertical axis. N = {646, 634, 424, 436, 420} per round, respectively for (a)-(e).
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Figure G2: Evolution of Beliefs: By Event
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(d) Quiz Event (self performance)
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(e) Quiz Event (other performance)

The path of beliefs starting from the prior (period 1), and after each sequential signal (periods 2 through
4). Average individual responses are the blue solid line, the Bayesian benchmark is marked as the black
dashed line. Bayesian benchmark takes prior beliefs, and subsequently uses Bayes’ rule to update beliefs.
Error bands represent 95% confidence intervals. Note the difference in the range of prior beliefs, on the
vertical axis. N = {318, 318, 326, 223, 95} per round, respectively for (a)-(e).
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H Experiment Instructions

Note: Accuracy payments were randomized at the session level a ∈ ${3, 10, 20}. Instruc-
tions show $20 for exposition only.

Instructions (Section 1)

Thank you for your participation in this experiment! This experiment will last approx-
imately 80 minutes. This experiment is about how likely you think an uncertain event is to
have occurred. You will consider four such separate events today, which will be presented
one at a time. For these events, we want you to think in terms of the percent chance out of
100 that they occurred. For example, you may believe that there is 50% chance that when
flipping a coin it will come up TAILS. This experiment has been designed so that you have
the greatest chance of earning the most money when you carefully and accurately think
about the percent chance of such an event occurring.

You will be awarded a $10 show-up fee for your participation until the end, in addition
to anything you may earn during the experiment. Please also note the following during
the experiment:

• Please put away any cell phones/devices. Outside communication or accessing the
internet during this experiment is forbidden. Violators will not receive payment and
will be blacklisted from the lab.

• Please do not communicate with others in the lab, except to ask questions

• If you have a question please do not hesitate to ask! Questions are encouraged!

We will now introduce the experiment through Instructions 1-3 and three short practice
sessions that go with each set of instructions. The practice sessions are to help you get
familiar with the experiment’s components that will ALL be combined when doing the
final experiment for money.

The “Main Event”

In this experiment you are estimating the percent chance that a “main event” occurred.
An example of a “main event” is: the average temperature in the contiguous USA was
warmer in 2013 than 2012. Your earnings are in part based on the accuracy of your
predictions of whether the “main event” occurred. Think about the following: What is the
probability the average temperature in the USA was warmer in 2013 than 2012?

How will I record my percent chance estimate?

First we introduce a gumball machine with 100 green and black gumballs. For example,
suppose there are 40 green and 60 black gumballs. Most people would agree that the
probability of drawing a green gumball is exactly 40%. Now think back to the “main
event” about the weather being warmer in 2013 than 2012 in the US. We next give you
$20. But this $20 must be wagered on one of two scenarios.
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1. The “gumball event”: Drawing a green gumball from a machine with 40 out of 100
green, OR

2. The “main event”: the average US temperature in 2013 was warmer than it was in
2012.

You have to decide if you think the chance that the weather was warmer in 2013
is greater than 40%, or less than 40%. If you decide to wager the $20 on the “gumball
event”, the computer randomly draws a gumball from the machine with 40 green (60 black)
gumballs. If it’s green you win the $20. If black, you get nothing. If you decided to go
with the “main event”: the climate being warmer in 2013, we check the statistics. If it was
warmer, you win the $20. If it was colder, you get nothing.

Consider different numbers of green gumballs:

If the gumball machine has only 2 green gumballs (98 black) would you prefer to wager
$20 on the “gumball event” or the “main event”? Most of you probably think the climate
being warmer in 2013 than 2012 is more likely than 2% and prefer to wager the $20 on the
“main event”.

What if the gumball machine has 25 green gumballs? Those who think the “main
event” is more likely than 25% would want to wager on the “main event”. Now, what if
the gumball machine has 90 green gumballs? The “gumball event” now pays off with 90%
chance. Probably, almost everyone will prefer to wager the $20 on the gumball machine,
except for those that think there is a greater than 90% chance that the weather was warmer
in 2013.

Example – You think there is a 35% chance the weather is warmer in 2013 than 2012.

• Case 1: Whenever you see a gumball machine with 34 or less green gumballs, to earn
the most money you would want to wager the $20 on the “main event”. E.g. if there
were 5 green gumballs, 5% is a lower chance than 35% of earning the $20.

• Case 2: If you see a gumball machine with 36 or more green gumballs, you would
prefer to wager the $20 on the “gumball event”. E.g. If there were 60 green gumballs,
this is a 60% chance of drawing green – better than the 35% chance you think the
weather would be warmer.

• If there are exactly 35 green gumballs, you probably don’t care whether to wager
your $20 on the “gumball event” or the “main event”. Both give you a 35% chance
of earning the $20.

The “Slider”

In this experiment you are going to indicate on a “slider” exactly how many gumballs
need to be green before you prefer to wager $20 on the “gumball event” instead of some
other “main event”. In other words, you will indicate the minimum number of gumballs
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that have to be green, before you prefer to wager $20 on the gumball machine. To make
sure it is in your best financial interest to do this, after you have made your slider choice
we are going to randomly fill a gumball machine with 0 to 100 green gumballs and the rest
black. Each possible number of green gumballs is equally likely – and your slider choice
has no effect on the number chosen. Based on your slider choice, we will then make the
$20 wager for you. If there happen to be less green gumballs than the minimum you chose,
your $20 is wagered on whatever main event you are predicting. If there happen to be
more (or the same) green gumballs than the minimum you indicated in the slider, we will
wager your $20 on drawing a green gumball from this machine we randomly filled.

If this is a little confusing, you can just remember, to have the highest chance of earning
money, your slider choice should be exactly the probability out of 100 you think the event
has of occurring.

Summary of Section 1

• Make selection on the “Slider” for your estimate of the “main event”

• Computer randomly generates an amount (out of 100) of “green gumballs”

• The amount of green gumballs determines how the $20 is wagered in your best inter-
est. 1) The “main event” or 2) The “gumball event”. The outcome of the $20 wager
is then revealed.

Are there any questions?

Instructions (Section 2) – “Feedback”

Now we’re going to make things more interesting. Suppose now the “Main event” is
that the average temperature in 1998 was warmer than 1997 in the contiguous USA.

Please note – these events are used for practice. The real events may (and will) be
different.

You will again adjust the slider to indicate how likely you believe this is to be true.
But now, after you adjust the “Slider” the first time, you are going to get some “feedback”
about whether or not 1998 was in fact warmer than 1997.

What is “Feedback”?

“Feedback” is information about the main event that gives you additional clues to help
you make your selection. Please note that you are provided three rounds of this “feedback”
– however each time you are presented with this “feedback” it may or may not be telling
you the truth. For our experiment we use gremlins to provide the three rounds of feedback
when making your selection. For each round, two gremlins always tell the truth while one
of them, Larry, always lies. You will not know which gremlin is talking and after you get
this “feedback”, you can adjust your prediction on the ‘Slider” if you choose to use their
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information. Note: The gremlins are randomly chosen “with replacement”, meaning that
every time you get “feedback” it is true with 2/3 probability. This means, that it’s even
possible (though unlikely) that all three rounds of feedback come from the gremlin that
lied!

Remember: All 3 gremlins always know whether the event happened or not. It’s just
that only 2 of these 3 tell the truth. When we determine your earnings, before filling the
gumball machine we are going to randomly only pick one of these four slider choices. Are
there any questions at this point? Next we proceed to the second practice. In this example
please note two additional tools for your use.

1. Calculate Fraction: Pulls up a calculator in case you want to transform a fraction to
a decimal.

2. Show History: Shows you your history of feedback from gremlins AND your past
slider choices.

Instructions (Section 3) – Payment groups

The last component explains how you might earn additional money during this exper-
iment. This is very important to understand when conducting the final experiment. You
will all be in one of two payment groups: “red” or “blue”. NOTE: You will not know which
payment group (red or blue) you are in when you make your slider choices. Suppose now
the ‘main event” is whether the climate in the USA was warmer in 1990 than 1980.

“The Red Group”

Half of you are going to be in the “red” group. In the “red” group, your payment at
the end looks exactly like how we have been practicing so far. We will pick one of your
four slider choices incorporating the “feedback”, and then fill a gumball machine with a
random number of green gumballs. Based on your selection, if the $20 is wagered on the
“gumball event” then a gumball would be drawn – if green you earn the $20. If the $20 is
wagered on the “main event”, then if that event occurred you earn the $20.

“The Blue Group”

The other half of you will be in the “blue” group. The “blue” group automatically
gets $20, just for being blue. In this group, the slider choices previously selected do not
matter for payment. Instead payment depends on a “blue bonus chip” provided that pays
out only if the event you are predicting actually occurs. Taking the example of climate,
if 1990 was warmer than 1980, and if you are in the blue group, you would receive $20
automatically, plus whatever amount is on the “blue bonus chip”. The amount on the chip
is either $0 or $80. Each is equally likely. Example: If you’re in the “blue” group you
would automatically earn $20, and if the main event you are predicting occurs you would
also earn the amount on the blue bonus chip ($0 or $80): for a maximum earnings of $100.
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“Blue Bonus chip”

Everyone will get a “blue bonus chip” prior to knowing which group you are in and
prior to each of the four events. The experiment coordinator will fill a bag with half $0
chips and half $80 chips. Then, each of you will draw one of these chips from the bag.
Note that having a “blue bonus chip” is only significant when you end up in the “blue”
group and indicates how much is earned if the event happens AND if you are in the “blue”
group.

Each of you has a fair, 50% chance of drawing an $80 bonus chip. There is no advantage
to drawing a chip earlier or later, everyone in this room has the same 50% chance. Even
if you are the last to draw, and there is only one chip left, that one chip is $0 with 50%
chance and $80 with 50% chance. Since you don’t know if you’re “red” or “blue” until all
slider choices have been made, in order to have the best chance of earning the most money,
it pays to be as accurate as possible when making slider choices.

Are there any questions at this point? Next we proceed to the final practice. Note
that your “blue bonus chip” has an 8-digit code that you are required to enter into the
computer. Your “blue bonus chip” does not affect in any way the event that you will be
predicting. The event is the same if you pick a $0 chip or an $80 chip. Forget about the
gremlins or “feedback” for this practice, yet they will be in the main experiment.

Summary for the Final experiment

Now we are ready to put ALL the pieces together for the final experiment! There are
going to be four main events, however only one will be picked at random for payment.

1. The coordinator will come around with a bag that contains a 50/50 mix of $0 and
$80 “blue bonus chips” for the upcoming event.

2. Make a note of your “blue bonus chip” amount. This is what you could earn if the
event happens AND if you also happen to be in the blue group.

3. The event will be described to you. Next, indicate on the “Slider” the probability
you believe the event occurred. Your slider choice does not affect how many green
gumballs the random gumball machine will have nor does it affect the chances of the
“main event”.

4. You’ll get “Feedback” three times from a random gremlin. Remember there is a 2/3
chance the feedback is true. You can choose to use this information if you want to
reassess the probability by indicating this on the slider after each “Feedback”.

5. Steps 1 to 4 are repeated for each of the four events.

After making all of your slider choices:
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1. The coordinator will come with two bags. The color bag contains 50/50 mix of blue
and red chips. The chip you draw determines if your payment group is red or blue.
If it is red, the slider choice (1-4) is indicated on the chip.

2. The event bag contains an equal amount of Event #1, #2, #3 and #4 chips. The
number on the chip determines what event will be paid.

Suppose you picked the chip for Event #1.

1. IF draw RED: The chip indicates the slider choice. A gumball machine is filled with
a random number of green gumballs. Based on your slider choice, $20 is wagered on
gumball machine or Event #1, as we practiced.

2. IF draw BLUE: The outcome of Event #1 is revealed. If the event occurred you
earn $20 + the amount on your event #1 bonus chip, $80 or $0. If the event did not
occur you just earn the $20. After your payment is determined, we will reveal the
outcomes of the other three events. This is for your information only, and it does not
affect your payment.

Important Notes:

The procedures that will occur today have been approved by the University Committee on Activities
Involving Human Subjects (UCAIHS). This experiment complies with UCAIHS requirements (HS# 10-
8117), in particular, not to engage in any deception or misinformation about the probabilities presented
today.

• When you encounter random chance off the computer (e.g. when drawing chips from the bag) we
make every effort to ensure that this is transparent and legitimate. If we state there is a 50-50 chance
of drawing a particular chip, we will have at least one participant verify that this is indeed the case.
(any participant may ask to verify the bag contents before the draws begin)

• When you encounter random chance on the computer (e.g. drawing a gumball from a hypothetical
machine) the computer has been programmed to perform the randomization exactly as is stated in
this experiment. For example, if you are told that there are 30 green gumballs and 70 black, the
computer is programmed to randomly select a green gumball with exactly 30 chances out of 100.

Before moving forward to the next main event, the computer will wait for everyone to finish the current
event. There is no advantage to finishing quickly, as you will end up waiting for other participants.
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